Open Access
Issue
MATEC Web Conf.
Volume 407, 2025
19e Congrès de la Société Française de Génie des Procédés (SFGP2024)
Article Number 05004
Number of page(s) 13
Section Procédés pour la santé / Health Processes
DOI https://doi.org/10.1051/matecconf/202540705004
Published online 04 March 2025
  1. Aksoylu Özbek, Z., & Günc Ergönül, P. (2020). Optimisation of wall material composition of freeze-dried pumpkin seed oil microcapsules: Interaction effects of whey protein, maltodextrin, and gum Arabic by D-optimal mixture design approach. Food Hydrocolloids, 107. https://doi.org/10.1016/j.foodhyd.2020.105909 [Google Scholar]
  2. Arslan, S., Erbas, M., Tontul, I., & Topuz, A. (2015). Microencapsulation of probiotic Saccharomyces cerevisiae var: Boulardii with different wall materials by spray drying. LWT, 63(1), 685–690. https://doi.org/10.1016/j.lwt.2015.03.034 [CrossRef] [Google Scholar]
  3. Brashears, M. M., & Gilliland, S. E. (1995). Survival During Frozen and Subsequent Refrigerated Storage of Lactobacillus acidophilus Cells as Influenced by the Growth Phase. Journal of Dairy Science, 78(11), 2326–2335. https://doi.org/10.3168/jds.S0022-0302(95)76859-X [CrossRef] [Google Scholar]
  4. Budincic, J. M., Petrovic, L., Dekic, L., Fraj, J., Bucko, S., Katona, J., & Spasojevic, L. (2021). Study of vitamin E microencapsulation and controlled release from chitosan/sodium lauryl ether sulfate microcapsules. Carbohydrate Polymers, 251. https://doi.org/10.1016/j.carbpol.2020.116988 [CrossRef] [Google Scholar]
  5. Cazón, P., Vázquez, M. Mechanical and barrier properties of chitosan combined with other components as food packaging film. Environ Chem Lett 18, 257–267 (2020). https://doi.org/10.1007/s10311-019-00936-3 [CrossRef] [Google Scholar]
  6. Chandralekha, A., Rani, A., Tavanandi, H. A., Amrutha, N., Hebbar, U., & Raghavarao, K. S. M. S. (2017). Role of carrier material in encapsulation of yeast (Saccharomyces cerevisiae) by spray drying. Drying Technology, 35(8), 1029–1042. https://doi.org/10.1080/07373937.2016.1230626 [CrossRef] [Google Scholar]
  7. Cui, T., Chen, C., Jia, A., Li, D., Shi, Y., Zhang, M., Bai, X., Liu, X., & Liu, C. (2021). Characterization and human microfold cell assay of fish oil microcapsules: Effect of spray drying and freeze-drying using konjac glucomannan (KGM)-soybean protein isolate (SPI) as wall materials. Journal of Functional Foods, 83. https://doi.org/10.1016/j.jff.2021.104542 [CrossRef] [Google Scholar]
  8. Díaz Vergara, L. I., Arata Badano, J., Aminahuel, C. A., Vanden Braber, N. L., Rossi, Y. E., Pereyra, C. M., Cavaglieri, L. R., & Montenegro, M. A. (2023). Chitosan-glucose derivative as effective wall material for probiotic yeasts microencapsulation. International Journal of Biological Macromolecules, 253. https://doi.org/10.1016/j.ijbiomac.2023.127167 [Google Scholar]
  9. Dong, X., Woo, M. W., & Quek, S. Y. (2024). The physicochemical properties, functionality, and digestibility of hempseed protein isolate as impacted by spray drying and freeze drying. Food Chemistry, 433. https://doi.org/10.1016/j.foodchem.2023.137310 [CrossRef] [Google Scholar]
  10. Estevinho, B. N., Rocha, F., Santos, L., & Alves, A. (2013). Microencapsulation with chitosan by spray drying for industry applications - A review. In Trends in Food Science and Technology (Vol. 31, Issue 2, pp. 138–155). https://doi.org/10.1016/j.tifs.2013.04.001 [CrossRef] [Google Scholar]
  11. Faustino, M., Pereira, C. F., Duräo, J., Oliveira, A. S., Pereira, J. O., Ferreira, C., Pintado, M. E., & Carvalho, A. P. (2023). Effect of drying technology in Saccharomyces cerevisiae mannans: Structural, physicochemical, and functional properties. Food Chemistry, 412. https://doi.org/10.1016/j.foodchem.2023.135545 [Google Scholar]
  12. Grange, C., Aigle, A., Ehrlich, V., Salazar Ariza, J. F., Brichart, T., Da Cruz-Boisson, F., David, L., Lux, F., & Tillement, O. (2023). Design of a water-soluble chitosan-based polymer with antioxidant and chelating properties for labile iron extraction. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-34251-3 [CrossRef] [Google Scholar]
  13. Kanimozhi, N. V., & Sukumar, M. (2023). Effect of different cryoprotectants on the stability and survivability of freeze dried probiotics. Food Chemistry Advances, 3. https://doi.org/10.1016/j.focha.2023.100428 [CrossRef] [Google Scholar]
  14. Luangthongkam, P., Blinco, J. A., Dart, P., Callaghan, M., & Speight, R. (2021). Comparison of spraydrying and freeze-drying for inoculum production of the probiotic Bacillus amyloliquefaciens strain H57. Food and Bioproducts Processing, 130, 121–131. https://doi.org/10.1016/j.fbp.2021.09.010 [CrossRef] [Google Scholar]
  15. Öztürk, H. I. (2022). The effect of different lyophilisation pressures on the microbiological stability, physicochemical, microstructural, and sensorial properties of yoghurt powders. International Dairy Journal, 129. https://doi.org/10.1016/j.idairyj.2022.105347 [Google Scholar]
  16. Parsana, Y., Yadav, M., & Kumar, S. (2023). Microencapsulation in the chitosan-coated alginate-inulin matrix of Limosilactobacillus reuteri SW23 and Lactobacillus salivarius RBL50 and their characterization. Carbohydrate Polymer Technologies and Applications, 5. https://doi.org/10.1016/j.carpta.2023.100285 [CrossRef] [Google Scholar]
  17. Perrechil, F., Louzi, V. C., Alves da Silva Paiva, L., Valentin Natal, G. S., & Braga, M. B. (2021). Evaluation of modified starch and rice protein concentrate as wall materials on the microencapsulation of flaxseed oil by freeze-drying. LWT, 140. https://doi.org/10.1016/j.lwt.2020.110760 [CrossRef] [Google Scholar]
  18. Ruengdech, A., & Siripatrawan, U. (2022). Improving encapsulating efficiency, stability, and antioxidant activity of catechin nanoemulsion using foam mat freeze-drying: The effect of wall material types and concentrations. LWT, 162. https://doi.org/10.1016/j.lwt.2022.113478 [CrossRef] [Google Scholar]
  19. Thinkohkaew, K., Jonjaroen, V., Niamsiri, N., Panya, A., Suppavorasatit, I., & Potiyaraj, P. (2024). Microencapsulation of probiotics in chitosan-coated alginate/gellan gum: Optimization for viability and stability enhancement. Food Hydrocolloids, 151. https://doi.org/10.1016/j.foodhyd.2024.109788 [CrossRef] [Google Scholar]
  20. Trabelsi, I., Ayadi, D., Bejar, W., Bejar, S., Chouayekh, H., & Ben Salah, R. (2014). Effects of Lactobacillus plantarum immobilization in alginate coated with chitosan and gelatin on antibacterial activity. International Journal of Biological Macromolecules, 64, 84–89. https://doi.org/10.1016/j.ijbiomac.2013.11.031 [CrossRef] [Google Scholar]
  21. Vanden Braber, N. L., Díaz Vergara, L. I., Rossi, Y. E., Aminahuel, C. A., Mauri, A. N., Cavaglieri, L. R., & Montenegro, M. A. (2020). Effect of microencapsulation in whey protein and water-soluble chitosan derivative on the viability of the probiotic Kluyveromyces marxianus VM004 during storage and in simulated gastrointestinal conditions. LWT, 118. https://doi.org/10.1016/j.lwt.2019.108844 [CrossRef] [Google Scholar]
  22. Verlhac, P., Vessot-Crastes, S., Degobert, G., Cogné, C., Andrieu, J., Beney, L., Gervais, P., & Moundanga, S. (2020). Experimental study and optimization of freeze-drying cycles of a model Casei type probiotic bacteria. Drying Technology, 38(16), 2120–2133. https://doi.org/10.1080/07373937.2019.1683859 [CrossRef] [Google Scholar]
  23. Vorländer, K., Pramann, P., Kwade, A., Finke, J. H., & Kampen, I. (2023). Process and formulation parameters influencing the survival of Saccharomyces cerevisiae during spray drying and tableting. International Journal of Pharmaceutics, 642. https://doi.org/10.1016/j.ijpharm.2023.123100 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.