Open Access
Issue
MATEC Web Conf.
Volume 407, 2025
19e Congrès de la Société Française de Génie des Procédés (SFGP2024)
Article Number 06001
Number of page(s) 17
Section Transitions énergétiques et industrielles / Energy and Industrial Transitions
DOI https://doi.org/10.1051/matecconf/202540706001
Published online 04 March 2025
  1. Andrew, R.M. (2018) ‘Global CO2 emissions from cement production’, Earth System Science Data, 10(1), pp. 195–217. Available at: https://doi.org/10.5194/ESSD-10-195-2018. [CrossRef] [Google Scholar]
  2. Berlinguette, C., Zhang, Z., Mowbray, B., Parkyn, C., Kim, Y., Ji, T. and Ren, S. (2023) ‘Electrolytic cement clinker production sustained through orthogonalization of ion vectors’. Available at: https://doi.org/10.21203/RS.3.RS-3256778/V1. [Google Scholar]
  3. Carletti, C., Grénman, H., De Blasio, C., Makila, E., Salonen, J., Murzin, D.Y., Salmi, T. and Westerlund, T. (2016) ‘Revisiting the dissolution kinetics of limestone - experimental analysis and modeling’, Journal of Chemical Technology & Biotechnology, 91(5), pp. 1517–1531. Available at: https://doi.org/10.1002/JCTB.4750. [CrossRef] [Google Scholar]
  4. Ellis, L.D., Badel, A.F., Chiang, M.L., Park, R.J.-Y. and Chiang, Y.-M. (2020) ‘Toward electrochemical synthesis of cement—An electrolyzer-based process for decarbonating CaCO3 while producing useful gas streams’, Proceedings of the National Academy of Sciences, 117(23), pp. 12584–12591. Available at: https://doi.org/10.1073/PNAS.1821673116. [CrossRef] [Google Scholar]
  5. Goodwin, J.G., Hongsirikarn, K., Greenway, S. and Creager, S. (2010) ‘Effect of cations (Na+, Ca2+, Fe3+) on the conductivity of a Nafion membrane’, Journal of Power Sources, 195(21), pp. 7213–7220. Available at: https://doi.org/10.1016/J.JPOWSOUR.2010.05.005. [CrossRef] [Google Scholar]
  6. Haynes, W.M.T.A.-T.T.-W.M. (2014) CRC Handbook of Chemistry and Physics, 95th Edition. LK - https://tue.on.worldcat.org/oclc/908078665, Journal of the American Pharmaceutical Association. Available at: http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1631986%0Ahttp://www.hbcpnetbase.com (Accessed: 22 August 2024). [Google Scholar]
  7. Isono, T. (1984) ‘Density, Viscosity, and Electrolytic Conductivity of Concentrated Aqueous Electrolyte Solutions at Several Temperatures. Alkaline-Earth Chlorides, LaCI3, Na2SC4, NaNC3, NaBr, KNC3, KBr, and Cd(NO3)2’, Journal of Chemical and Engineering Data, 29(1), pp. 45–52. Available at: https://doi.org/10.1021/JE00035A016/ASSET/JE00035A016.FP.PNG_V03. [CrossRef] [Google Scholar]
  8. Johansson, A., Gogoll, A. and Tegenfeldt, J. (1996) ‘Diffusion and ionic conductivity in Li(CF3SO3)PEG10 and LiN(CF3SO2)2PEG10’, Polymer, 37(8), pp. 1387–1393. Available at: https://doi.org/10.1016/0032-3861(96)81136-0. [CrossRef] [Google Scholar]
  9. Kaya, M.F. and Demir, N. (2017) ‘Numerical Investigation of PEM Water Electrolysis Performance for Different Oxygen Evolution Electrocatalysts’, Fuel Cells, 17(1), pp. 37–47. Available at: https://doi.org/10.1002/FUCE.201600216. [CrossRef] [Google Scholar]
  10. Kreuer, K.D., Paddison, S.J., Spohr, E. and Schuster, M. (2004) ‘Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology’, Chemical Reviews, 104(10), pp. 4637–4678. Available at: https://doi.org/10.1021/CR020715F/ASSET/CR020715F.FP.PNG_V03. [CrossRef] [Google Scholar]
  11. Kuldeep, Kauranen, P., Pajari, H., Pajarre, R. and Murtomaki, L. (2021) ‘Electrodiffusion of ions in ion exchange membranes: Finite element simulations and experiments’, Chemical Engineering Journal Advances, 8, p. 100169. Available at: https://doi.org/10.1016/J.CEJA.2021.100169. [CrossRef] [Google Scholar]
  12. Lu, J., Tang, H., Xu, C. and Jiang, S.P. (2012) ‘Nafion membranes with ordered mesoporous structure and high water retention properties for fuel cell applications’, Journal of Materials Chemistry, 22(12), pp. 5810–5819. Available at: https://doi.org/10.1039/C2JM14838B. [CrossRef] [Google Scholar]
  13. Mowbray, B.A.W., Zhang, Z.B., Parkyn, C.T.E. and Berlinguette, C.P. (2023a) ‘Electrochemical Cement Clinker Precursor Production at Low Voltages’, ACS Energy Letters, 8(4), pp. 1772–1778. Available at: https://doi.org/10.1021/acsenergylett.3c00242. [CrossRef] [Google Scholar]
  14. Mowbray, B.A.W., Zhang, Z.B., Parkyn, C.T.E. and Berlinguette, C.P. (2023b) ‘Electrochemical Cement Clinker Precursor Production at Low Voltages’, ACS Energy Letters, 8(4), pp. 1772–1778. Available at: https://doi.org/10.1021/ACSENERGYLETT.3C00242/SUPPL_FILE/NZ3C00242_SI_001.PDF. [CrossRef] [Google Scholar]
  15. Okada, T., Nakamura, N., Yuasa, M. and Sekine, I. (1997) ‘Ion and Water Transport Characteristics in Membranes for Polymer Electrolyte Fuel Cells Containing H + and Ca2 + Cations’, Journal of The Electrochemical Society, 144(8), pp. 2744–2750. Available at: https://doi.org/10.1149/1.1837890/XML. [CrossRef] [Google Scholar]
  16. Plummer, L.N., Parkhurst, D.L. and Wigley, T.M.L. (1979) ‘CRITICAL REVIEW OF THE KINETICS OF CALCITE DISSOLUTION AND PRECIPITATION.’, ACS Symposium Series, (93), pp. 537–573. Available at: https://doi.org/10.1021/BK-1979-0093.CH025. [CrossRef] [Google Scholar]
  17. Ramirez-Amaya, D., Dreyse, P., Martínez, N.P., Troncoso P., F., Navarrete, I., Noël, M., Canales, R.I. and González, M. (2023) ‘Comparison of the electrochemical decarbonation of different-grade limestones used in cement manufacturing’, Cement and Concrete Research, 174, p. 107307. Available at: https://doi.org/10.1016/J.CEMCONRES.2023.107307. [CrossRef] [Google Scholar]
  18. Rau, G.H., Carroll, S.A., Bourcier, W.L., Singleton, M.J., Smith, M.M. and Aines, R.D. (2013) ‘Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production’, Proceedings of the National Academy of Sciences of the United States of America, 110(25), pp. 10095–10100. Available at: https://doi.org/10.1073/PNAS.1222358110. [CrossRef] [Google Scholar]
  19. Rouxhet, R., Loudeche, M., Santoro, R. and Proost, J. (2024) ‘Low-Temperature Water Electrolysis Under a Sustained pH-Gradient for Electrochemically-Induced Decarbonation of Limestone into Hydrated Lime’, Journal of The Electrochemical Society, 171(9), p. 094504. Available at: https://doi.org/10.1149/1945-7111/AD73A6. [CrossRef] [Google Scholar]
  20. Shao, Y., Shigenobu, K., Watanabe, M. and Zhang, C. (2020) ‘Role of Viscosity in Deviations from the Nernst-Einstein Relation’, Journal of Physical Chemistry B, 124(23), pp. 4774–4780. Available at: https://doi.org/10.1021/ACS.JPCB.0C02544/ASSET/IMAGES/MEDIUM/JP0C02544_M021.GIF. [CrossRef] [Google Scholar]
  21. Shih, S.M., Lin, J.P. and Shiau, G.Y. (2000) ‘Dissolution rates of limestones of different sources’, Journal of Hazardous Materials, 79(1-2), pp. 159–171. Available at: https://doi.org/10.1016/S0304-3894(00)00253-3. [CrossRef] [Google Scholar]
  22. Stenina, I.A. and Yaroslavtsev, A.B. (2021) ‘Ionic Mobility in Ion-Exchange Membranes’, Membranes 2021, Vol. 11, Page 198, 11(3), p. 198. Available at: https://doi.org/10.3390/MEMBRANES11030198. [Google Scholar]
  23. Thompson, E.L., Capehart, T.W., Fuller, T.J. and Jorne, J. (2006) ‘Investigation of Low-Temperature Proton Transport in Nafion Using Direct Current Conductivity and Differential Scanning Calorimetry’, Journal of The Electrochemical Society, 153(12), p. A2351. Available at: https://doi.org/10.1149/1.2359699/XML. [CrossRef] [Google Scholar]
  24. Verma, A.K., Thorat, A.S. and Shah, J.K. (2024) ‘Estimating ionic conductivity of ionic liquids: Nernst-Einstein and Einstein formalisms’, Journal of Ionic Liquids, 4(1), p. 100089. Available at: https://doi.org/10.1016/J.JIL.2024.100089. [CrossRef] [Google Scholar]
  25. Volkov, V.I., Chernyak, A. V., Avilova, I.A., Slesarenko, N.A., Melnikova, D.L. and Skirda, V.D. (2021) ‘Molecular and Ionic Diffusion in Ion Exchange Membranes and Biological Systems (Cells and Proteins) Studied by NMR’, Membranes 2021, Vol. 11, Page 385, 11(6), p. 385. Available at: https://doi.org/10.3390/MEMBRANES11060385. [Google Scholar]
  26. Xie, Q., Wan, L., Zhang, Z. and Luo, J. (2023a) ‘Electrochemical transformation of limestone into calcium hydroxide and valuable carbonaceous products for decarbonizing cement production’, iScience, 26(2), p. 106015. Available at: https://doi.org/10.1016/j.isci.2023.106015. [CrossRef] [Google Scholar]
  27. Xie, Q., Wan, L., Zhang, Z. and Luo, J. (2023b) ‘Electrochemical transformation of limestone into calcium hydroxide and valuable carbonaceous products for decarbonizing cement production’, iScience, 26(2), p. 106015. Available at: https://doi.org/10.1016/J.ISCI.2023.106015. [CrossRef] [Google Scholar]
  28. Zeng, K. and Zhang, D. (2009) ‘Recent progress in alkaline water electrolysis for hydrogen production and applications’. Available at: https://doi.org/10.1016/j.pecs.2009.11.002. [Google Scholar]
  29. Zhang, Z., Mowbray, B.A.W., Parkyn, C., Waizenegger, C., Williams, A.S.R., Lees, E.W., Ren, S., Jansonius, R.P. and Berlinguette, C.P. (no date) ‘Cement clinker production in an electrolyser’. [Google Scholar]
  30. Zhang, Z., Mowbray, B.A.W., Parkyn, C.T.E., Waizenegger, C., Williams, A.S.R., Lees, E.W., Ren, S., Kim, Y., Jansonius, R.P. and Berlinguette, C.P. (2022) ‘Cement clinker precursor production in an electrolyser’, Energy and Environmental Science, 15(12), pp. 5129–5136. Available at: https://doi.org/10.1039/d2ee02349k. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.