Open Access
Issue
MATEC Web Conf.
Volume 407, 2025
19e Congrès de la Société Française de Génie des Procédés (SFGP2024)
Article Number 05003
Number of page(s) 18
Section Procédés pour la santé / Health Processes
DOI https://doi.org/10.1051/matecconf/202540705003
Published online 04 March 2025
  1. Arakawa, T. & Timasheff, S. N., 1982, Stabilization of protein structure by sugars. Biochemistry 21, :36–6544. [Google Scholar]
  2. Cartensen, J. T., 1972, Theory of pharmaceutical systems. IAcademic Press, New-York 219–241. [Google Scholar]
  3. Croughan, M. S., Hamel, J. & Wang, D. I. C., 2006, Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol. Bioeng. 95:295–305. [CrossRef] [Google Scholar]
  4. Crowe, J. H., Hoekstra, F. A. & Crowe, L. M., 1992, Anhydrobiosis. Annu. Rev. Physiol. 54:579–599. [CrossRef] [Google Scholar]
  5. European Medicines Agency, 2014, ICH Q8 (R2) Pharmaceutical development - Scientific guideline. EMA/CHMP/ICH/167068/2004. [Google Scholar]
  6. Froessling, N., 1958, Evaporation, heat transfer, and velocity distribution in two-dimensional and rotationally symmetrical laminar boundary layer flow. National Advisory Committee for Aeronautics - Technical Momorandum 1432. [Google Scholar]
  7. Grijseels, H., Crommelin, D. J. A. & Blaey, C. J., 1981, Hydrodynamic approach to dissolution rate. Pharm. Weekbl. 3:1005–1020. [Google Scholar]
  8. Grisafi, F., Brucato, A., Caputo, G., Lima, S. & Scargiali, F., 2023, Modelling particle dissolution in stirred vessels. Chem. Eng. Res. Des. 195:662–672. [CrossRef] [Google Scholar]
  9. Hemrajani, R. R. & Tatterson, G. B., 2003, Mechanically Stirred Vessels. Handbook of Industrial Mixing: Science and Practice 345–390. [CrossRef] [Google Scholar]
  10. Hirt, C. W. & Nichols, B. D., 1981, Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39:201–225. [CrossRef] [Google Scholar]
  11. Kaushik, J. K. & Bhat, R., 2003, Why Is Trehalose an Exceptional Protein Stabilizer. An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J. Biol. Chem. 278:26458–26465. [CrossRef] [Google Scholar]
  12. Kersebaum, J., Flaischlen, S., Hofinger, J. & Wehinger, G. D., 2024, Simulating Stirred Tank Reactor Characteristics with a Lattice Boltzmann CFD Code. Chem. Eng. Technol. 47:586–595. [CrossRef] [Google Scholar]
  13. Kolmogorov, A., 1941, Turbulence and Stochastic Process: Kolmogorov’s Ideas 50 Years; The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers (1941). Proceedings: Mathematical and Physical Sciences 434:9–13. [Google Scholar]
  14. Langer, E. & Gillespie, D., 2022,. Report and Survey of Biopharmaceutical Manufacturing Capacity and Production, 19th annual edition. BioPlan Associates, Inc 490. [Google Scholar]
  15. Lasdon, L. S., Fox, R. L. & Ratner, M. W., 1974, Nonlinear optimization using the generalized reduced gradient method. Rev. française d’Autom., Inform., Rech. opérationnelle Rech. opérationnelle 8:73–103. [Google Scholar]
  16. Leslie, S. B., Israeli, E., Lighthart, B., Crowe, J. H. & Crowe, L. M., 1995, Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl. Environ. Microbiol. 61:3592–3597. [CrossRef] [Google Scholar]
  17. Merten, O.-W., 2015, Advances in cell culture: anchorage dependence. Philos. Trans. R. Soc. B: Biol. Sci. 370 [Google Scholar]
  18. Mishra, P. & Ein-Mozaffari, F., 2020, Critical review of different aspects of liquid-solid mixing operations. Rev. Chem. Eng. 36:555–592. [CrossRef] [Google Scholar]
  19. Murthy, B. N. & Joshi, J. B., 2008, Assessment of standard k-ε, RSM and LES turbulence models in a baffled stirred vessel agitated by various impeller designs. Chem. Eng. Sci. 63:5468–5495. [CrossRef] [Google Scholar]
  20. Naumann, Z. & Schiller, L., 1935, A drag coefficient correlation. Z. Ver. Deutsch. Ing 77:323. [Google Scholar]
  21. Neau, H., Pigou M., Fede P., Ansart R., Baudry C., Merigoux N., Lavieville J., Fournier Y., Renon N., Simonin O., 2020, Massively parallel numerical simulation using up to 36,000 CPU cores of an industrial-scale polydispersed reactive pressurized fluidized bed with a mesh of one billion cells. Powder Technol. 366:906–924. [CrossRef] [Google Scholar]
  22. Paul, E. L., Atiemo-Obeng, V. A. & Kresta, S. M., 2003, Handbook of Industrial Mixing. [CrossRef] [Google Scholar]
  23. Pohar, A., 2020, A Review of Computational Fluid Dynamics (CFD) Simulations of Mixing in the Pharmaceutical Industry. Biomed. J. Sci. Tech. Res. 27. [Google Scholar]
  24. Pollard, A. J. & Bijker, E. M., 2021, A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol. 21:83–100. [CrossRef] [Google Scholar]
  25. Pordal, H. S., Matice, C. J. & Fry, T. J., 2022, The Role of Computational Fluid Dynamics in the Pharmaceutical Industry. Pharmaceutical Technology. [Google Scholar]
  26. Ranz, W. & Marshall, J., 1952, Evaporation from drops. Chemical Engineering Progress 48:173–180. [Google Scholar]
  27. Richards, A. B., 2002, Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem. Toxicol. 40:871–898. [CrossRef] [Google Scholar]
  28. Rowe, R. C., Sheskey, P. & Quinn, M., 2009, Handbook of pharmaceutical excipients. [Google Scholar]
  29. Sanofi, 2020, Sanofi’s Evolutive Vaccine Facility (EVF), Neuville-sur-Saone. France. Pharmaceutical Technology. [Google Scholar]
  30. Shukla, A. A. & Gottschalk, U., 2013, Single-use disposable technologies for biopharmaceutical manufacturing. Trends Biotechnol. 31:147–154. [CrossRef] [Google Scholar]
  31. Simonin, O., 1991, Prediction of the dispersed phase turbulence in particle-laden jets. Gas-Solid Flows ASME 121. [Google Scholar]
  32. Smagorinsky, J., 1963, General Circulation Experiments With The Primitive Equations. Mon. Weather Rev. 91:99–164. [NASA ADS] [CrossRef] [Google Scholar]
  33. Sommer, A.-E., Rox, H., Shi, P., Eckert, K. & Rzehak, R., 2021, Solid-liquid flow in stirred tanks: “CFD-grade” experimental investigation. Chem. Eng. Sci. 245. [Google Scholar]
  34. Shu, S. & Yang, N., 2018, GPU-accelerated large eddy simulation of stirred tanks. Chem. Eng. Sci. 181:132–145. [CrossRef] [Google Scholar]
  35. Thomas, J. A., 2021, Computational Fluid Dynamics in Upstream Biopharma Manufacturing Processes. Pharmaceutical Technology 45:34–40. [Google Scholar]
  36. Wickramasighe, S. R., Namila, Fan, R. & Qian, X., 2019, Current Trends and Future Developments on (Bio-) Membranes. 69–96. [CrossRef] [Google Scholar]
  37. Yancey, P. H., 2005, Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208:2819–2830. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.