Open Access
Issue |
MATEC Web Conf.
Volume 406, 2024
2024 RAPDASA-RobMech-PRASA-AMI Conference: Unlocking Advanced Manufacturing - The 25th Annual International RAPDASA Conference, joined by RobMech, PRASA and AMI, hosted by Stellenbosch University and Nelson Mandela University
|
|
---|---|---|
Article Number | 03014 | |
Number of page(s) | 21 | |
Section | Material Development | |
DOI | https://doi.org/10.1051/matecconf/202440603014 | |
Published online | 09 December 2024 |
- V. M. Tabie, C. Li, W. Saifu, J. Li, and X. Xu, “Mechanical properties of near alpha titanium alloys for high-temperature applications-a review,” Aircraft Engineering and Aerospace Technology, vol. 92, no. 4, pp. 521-540, 2020. [CrossRef] [Google Scholar]
- D. Yang, W. Tian, X. Zhang, K. Si, and J. Li, “Creep behavior of near α high temperature Ti-6.6 Al-4.6 Sn-4.6 Zr-0.9 Nb-1.0 Mo-0.32 Si alloy,” Frontiers in Materials, vol. 8, pp. 682831, 2021. [CrossRef] [Google Scholar]
- S. O. Jeje, M. B. Shongwe, E. N. Ogunmuyiwa, A. L. Rominiyi, and P. A. Olubambi, “Microstructure, Hardness, and Wear Assessment of Spark-Plasma- Sintered Ti-x Al-1Mo Alloy,” Metallurgical and Materials Transactions A, vol. 51, pp. 4033-4044, 2020. [CrossRef] [Google Scholar]
- Y. M. Ahmed, K. S. M. Sahari, M. Ishak, and B. A. Khidhir, “Titanium and its alloy,” International Journal of Science and Research, vol. 3, no. 10, pp. 1351-1361, 2014. [Google Scholar]
- G. Marković, V. Manojlović, J. Ružić, and M. Sokić, “Predicting Low-Modulus Biocompatible Titanium Alloys Using Machine Learning,” Materials, vol. 16, no. 19, pp. 6355, 2023. [CrossRef] [Google Scholar]
- S. S. Sidhu, H. Singh, and M. A.-H. Gepreel, “A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials,” Materials Science and Engineering: C, vol. 121, pp. 111661, 2021. [CrossRef] [Google Scholar]
- Y. Su, W. Li, X. Wang, T. Ma, X. Yang, and A. Vairis, “On microstructure and property differences in a linear friction welded near-alpha titanium alloy joint,” Journal of Manufacturing Processes, vol. 36, pp. 255-263, 2018. [CrossRef] [Google Scholar]
- R. R. Boyer, “An overview on the use of titanium in the aerospace industry,” Materials Science and Engineering: A, vol. 213, no. 1-2, pp. 103-114, 1996. [CrossRef] [Google Scholar]
- R. A. Antunes, C. A. F. Salvador, and M. C. L. d. Oliveira, “Materials selection of optimized titanium alloys for aircraft applications,” Materials Research, vol. 21, pp. e20170979, 2018. [Google Scholar]
- C. Veiga, J. P. Davim, and A. J. R. Loureiro, “Properties and applications of titanium alloys: a brief review,” Rev. Adv. Mater. Sci, vol. 32, no. 2, pp. 133-148, 2012. [Google Scholar]
- F. Haase, C. Siemers, L. Klinge, C. Lu, P. Lang, S. Lederer, T. König, and J. Rösler, “Aluminum-and vanadium-free titanium alloys for medical applications.” p. 05008. [Google Scholar]
- K. O. Babaremu, J. Tien-Chien, P. O. Oladijo, and E. T. Akinlabi, “Mechanical, corrosion resistance properties and various applications of titanium and its alloys: a review,” Revue des Composites et des Matériaux Avancés, vol. 32, no. 1, pp. 11, 2022. [CrossRef] [Google Scholar]
- G. W. Meetham, The Development of Gas Turbines: Springer, 1981. [Google Scholar]
- T. W. Farthing, “The development of titanium and its alloys,” Clinical Materials, vol. 2, no. 1, pp. 15-32, 1987. [CrossRef] [Google Scholar]
- S. Punnose, A. Mukhopadhyay, R. Sarkar, Z. Alam, D. Das, and V. Kumar, “Determination of critical strain for rapid crack growth during tensile deformation in aluminide coated near-α titanium alloy using infrared thermography,” Materials Science and Engineering: A, vol. 576, pp. 217-221, 2013. [CrossRef] [Google Scholar]
- K. Prasad, C. Parlikar, and D. K. Das, “Isothermal and thermomechanical fatigue behavior of aluminide coated near α titanium alloy,” International Journal of Fatigue, vol. 92, pp. 107-115, 2016. [CrossRef] [Google Scholar]
- Z. Zhao, R. Zhou, Z. Wang, J. Cai, and B. Chen, “High temperature fatigue behavior of a near-alpha titanium alloy,” International Journal of Fatigue, vol. 161, pp. 106918, 2022. [CrossRef] [Google Scholar]
- C. Parlikar, M. Z. Alam, R. Sarkar, and D. K. Das, “Effect of oxidation resistant Al3Ti coating on tensile properties of a near α-Ti alloy,” Surface and Coatings Technology, vol. 236, pp. 107-117, 2013. [CrossRef] [Google Scholar]
- W. J. Zhang, X. Y. Song, S. X. Hui, W. J. Ye, Y. L. Wang, and W. Q. Wang, “Tensile behavior at 700 C in Ti–Al–Sn–Zr–Mo–Nb–W–Si alloy with a bi-modal microstructure,” Materials Science and Engineering: A, vol. 595, pp. 159-164, 2014. [CrossRef] [Google Scholar]
- T. Kitashima, T. Hara, Y. Yang, and Y. Hara, “Oxidation–nitridation-induced recrystallization in a near-α titanium alloy,” Materials & Design, vol. 137, pp. 355-360, 2018. [CrossRef] [Google Scholar]
- J. Han, Z. Xiang, X. Ma, Z. Zhou, J. Huang, J. Li, A. Wang, G. Shen, and Z. Chen, “Evolution on the Microstructure and Mechanical Properties of a New Multicomponent Near-Alpha Titanium Alloy after Rolling and Heat Treatments,” Metals, vol. 13, no. 7, pp. 1231, 2023. [CrossRef] [Google Scholar]
- C. Dichtl, The Role of Microstructure on Strain Localization in The Near-Alpha Titanium Alloy Timetal® 834: The University of Manchester (United Kingdom), 2020. [Google Scholar]
- S. O. Jeje, M. B. Shongwe, N. Maledi, A. L. Rominiyi, B. J. Babalola, and P. F. Lepele, “Effect of Temperature on Densification, Microstructural Evolution and Mechanical Properties of Ti-5Al-1Mo Developed via Spark Plasma Sintering,” IOP Conference Series: Materials Science and Engineering, vol. 655, pp. 012018, 2019/11/08, 2019. [CrossRef] [Google Scholar]
- D. Wimler, J. Lindemann, C. Gammer, P. Spoerk-Erdely, A. Stark, H. Clemens, and S. Mayer, “Novel intermetallic-reinforced near-α Ti alloys manufactured by spark plasma sintering,” Materials Science and Engineering: A, vol. 792, pp. 139798, 2020. [CrossRef] [Google Scholar]
- Z. D. I. Sktani, A. Arab, J. J. Mohamed, and Z. A. Ahmad, “Effects of additives additions and sintering techniques on the microstructure and mechanical properties of Zirconia Toughened Alumina (ZTA): A review,” International Journal of Refractory Metals and Hard Materials, vol. 106, pp. 105870, 2022. [CrossRef] [Google Scholar]
- S. O. Jeje, M. B. Shongwe, A. L. Rominiyi, and P. A. Olubambi, “Spark plasma sintering of titanium matrix composite—a review,” The International Journal of Advanced Manufacturing Technology, vol. 117, no. 9, pp. 2529-2544, 2021. [CrossRef] [Google Scholar]
- S.-J. L. Kang, Sintering: densification, grain growth and microstructure: Elsevier, 2004. [Google Scholar]
- B. Fu, H. Wang, C. Zou, and Z. Wei, “The effects of Nb content on microstructure and fracture behavior of near α titanium alloys,” Materials & Design (1980-2015), vol. 66, pp. 267-273, 2015. [CrossRef] [Google Scholar]
- X.-L. Ma, K. Matsugi, and Y. Liu, “Design of Near α-Ti Alloys with Optimized Mechanical and Corrosion Properties and Their Characterizations,” Metals, 14, 2024]. [Google Scholar]
- E. Marin, and A. Lanzutti, “Biomedical Applications of Titanium Alloys: A Comprehensive Review,” Materials, 17, 2024]. [Google Scholar]
- A. Shah, S. N. F. Ismail, M. A. Hassam, R. Daud, and C. Beddows, “Surface Modification on Titanium Alloy for Biomedical Application,” Beddows C. Reference Module in Materials Science and Materials Engineering. Amsterdam: Elsevier, pp. 1-9, 2018. [Google Scholar]
- S. O. Jeje, M. B. Shongwe, N. Maledi, E. N. Ogunmuyiwa, L. C. Tshabalala, B. J. Babalola, and P. A. Olubambi, “Sintering behavior and alloying elements effects on the properties of CP-Titanium sintered using pulsed electric current,” Materials Chemistry and Physics, vol. 256, pp. 123707, 2020. [CrossRef] [Google Scholar]
- J. D. Avila, S. Bose, and A. Bandyopadhyay, “Additive manufacturing of titanium and titanium alloys for biomedical applications,” Titanium in medical and dental applications, pp. 325-343: Elsevier, 2018. [Google Scholar]
- A. P. Mouritz, “Titanium alloys for aerospace structures and engines,” Introduction to aerospace materials, vol. 2, pp. 202-223, 2012. [Google Scholar]
- Y. Kawabe, “Present status and future trends of research activities on titanium materials in Japan,” Nippon Steel Technical Report, pp. 18-23, 2002. [Google Scholar]
- K. Y. Kim, J. H. Kim, D. W. Yun, P. L. Narayana, J. H. Kim, J. I. Lee, and J.-K. Hong, “Enhancing the mechanical properties and corrosion resistance of commercially pure titanium using tungsten carbide composites fabricated via additive manufacturing,” Journal of Materials Research and Technology, vol. 27, pp. 5070-5081, 2023. [CrossRef] [Google Scholar]
- G. Lütjering, and J. C. Williams, “Commercially pure (CP) titanium and alpha alloys,” Titanium, pp. 175-201, 2007. [Google Scholar]
- A. L. Rominiyi, and P. M. Mashinini, “Spark plasma sintering of discontinuously reinforced titanium matrix composites: densification, microstructure and mechanical properties—a review,” The International Journal of Advanced Manufacturing Technology, vol. 124, no. 3, pp. 709-736, 2023. [CrossRef] [Google Scholar]
- R. de Oro Calderon, C. Gierl-Mayer, and H. Danninger, “Fundamentals of sintering: liquid phase sintering,” Encyclopedia of materials: metals and alloys, vol. 3, pp. 481-92, 2022. [CrossRef] [Google Scholar]
- L. Fischer, K. Ran, D. Sebold, P. Behr, S. Baumann, J. Mayer, A. Nijmeijer, H. J. M. Bouwmeester, O. Guillon, and W. Meulenberg, “Impact of the sintering parameters on the microstructural and transport properties of 60 wt.% Ce0. 8Gd0. 2O2− δ–40 wt.% FeCo2O4 composites,” Materials Advances, 2024. [Google Scholar]
- B. J. Babalola, O. O. Ayodele, and P. A. Olubambi, “Sintering of nanocrystalline materials: Sintering parameters,” Heliyon, vol. 9, no. 3, 2023. [Google Scholar]
- R. M. German, G. L. Messing, and R. G. Cornwall, Sintering technology: CRC Press, 2020. [Google Scholar]
- A. Molinari, “Fundamentals of Sintering: Solid State Sintering,” Encyclopedia of Materials: Metals and Alloys, F. G. Caballero, ed., pp. 471-480, Oxford: Elsevier, 2022. [CrossRef] [Google Scholar]
- A. Rodriguez-Contreras, M. Punset, J. A. Calero, F. J. Gil, E. Ruperez, and J. M. Manero, “Powder metallurgy with space holder for porous titanium implants: A review,” Journal of Materials Science & Technology, vol. 76, pp. 129-149, 2021/06/20/, 2021. [CrossRef] [Google Scholar]
- M. F. Ijaz, H. F. Alharbi, Y. A. Bahri, and E.-S. M. Sherif, “Alloy Design and Fabrication of Duplex Titanium-Based Alloys by Spark Plasma Sintering for Biomedical Implant Applications,” Materials, 15, 2022]. [Google Scholar]
- C. Cai, X. Gao, Q. Teng, R. Kiran, J. Liu, Q. Wei, and Y. Shi, “Hot isostatic pressing of a near α-Ti alloy: Temperature optimization, microstructural evolution and mechanical performance evaluation,” Materials Science and Engineering: A, vol. 802, pp. 140426, 2021/01/20/, 2021. [CrossRef] [Google Scholar]
- R. M. German, “Chapter One - Introduction,” Sintering: from Empirical Observations to Scientific Principles, R. M. German, ed., pp. 1-12, Boston: Butterworth-Heinemann, 2014. [Google Scholar]
- Q. Xin, “2 - Durability and reliability in diesel engine system design,” Diesel Engine System Design, Q. Xin, ed., pp. 113-202: Woodhead Publishing, 2013. [CrossRef] [Google Scholar]
- M. Liu, A. Kumar, S. Bukkapatnam, and M. Kuttolamadom, “A Review of the Anomalies in Directed Energy Deposition (DED) Processes and Potential Solutions,” arXiv preprint arXiv:2009.11385, 2020. [Google Scholar]
- J. Chen, G. Feng, Y. Zheng, P. Lin, L. Wang, and Y. Li, “Effect of Cooling Rate on Microstructure Evolution and Mechanical Properties of SCM435 Steel,” Metals, vol. 14, no. 2, pp. 140, 2024. [CrossRef] [Google Scholar]
- L. Kang, and C. Yang, “A review on high‐strength titanium alloys: microstructure, strengthening, and properties,” Advanced Engineering Materials, vol. 21, no. 8, pp. 1801359, 2019. [CrossRef] [Google Scholar]
- S.-J. L. Kang, “1 - SINTERING PROCESSES,” Sintering, S.-J. L. Kang, ed., pp. 3-8, Oxford: Butterworth-Heinemann, 2005. [CrossRef] [Google Scholar]
- G. Lütjering, and J. C. Williams, “Titanium, Engineering Materials, and Processess, 2nd Edition,” Springer, 2007. [Google Scholar]
- C. Fleißner-Rieger, T. Pfeifer, C. Turk, and H. Clemens, “Optimization of the post-process heat treatment strategy for a near-α titanium base alloy produced by laser powder bed fusion,” Materials, vol. 15, no. 3, pp. 1032, 2022. [CrossRef] [Google Scholar]
- S. M. J. Babu, B. P. Kashyap, N. Prabhu, R. Kapoor, R. N. Singh, and J. K. Chakravartty, “Effect of hydrogen on high temperature flow behavior of near α-Ti alloy,” Materials Science and Engineering: A, vol. 679, pp. 75-86, 2017. [CrossRef] [Google Scholar]
- S. F. Jawed, C. D. Rabadia, M. A. Khan, and S. J. Khan, “Effect of alloying elements on the compressive mechanical properties of biomedical titanium alloys: a systematic review,” ACS omega, vol. 7, no. 34, pp. 29526-29542, 2022. [CrossRef] [Google Scholar]
- H.-b. Wang, S.-s. Wang, P.-y. Gao, T. Jiang, X.-g. Lu, and C.-h. Li, “Microstructure and mechanical properties of a novel near-α titanium alloy Ti6. 0Al4. 5Cr1. 5Mn,” Materials Science and Engineering: A, vol. 672, pp. 170-174, 2016. [CrossRef] [Google Scholar]
- P. Pesode, and S. Barve, “A review—metastable β titanium alloy for biomedical applications,” Journal of Engineering and Applied Science, vol. 70, no. 1, pp. 25, 2023. [CrossRef] [Google Scholar]
- Y. Chen, H. Kou, L. Cheng, K. Hua, L. Sun, Y. Lu, and E. Bouzy, “Crystallography of phase transformation during quenching from β phase field of a V-rich TiAl alloy,” Journal of materials science, vol. 54, pp. 1844-1856, 2019. [CrossRef] [Google Scholar]
- Y. Zhang, “Corrosion of titanium, zirconium and their alloys for biomedical applications,” 2018. [Google Scholar]
- M. Bermingham, S. McDonald, M. Dargusch, and D. StJohn, “MIcrostucture of cast titanium alloys,” Materials Forum, vol. 31, 01/01, 2007. [Google Scholar]
- S. Huang, Q. Zhao, Z. Yang, C. Lin, Y. Zhao, and J. Yu, “Strengthening effects of Al element on strength and impact toughness in titanium alloy,” Journal of Materials Research and Technology, vol. 26, pp. 504-516, 2023/09/01/, 2023. [CrossRef] [Google Scholar]
- T. Kitashima, Y. Yamabe-Mitarai, S. Iwasaki, and S. Kuroda, “Effects of Ga and Sn additions on the creep strength and oxidation resistance of near-α Ti alloys,” Metallurgical and Materials Transactions A, vol. 47, pp. 6394-6403, 2016. [CrossRef] [Google Scholar]
- F. Zhang, M. Yang, A. T. Clare, X. Lin, H. Tan, and Y. Chen, “Microstructure and mechanical properties of Ti-2Al alloyed with Mo formed in laser additive manufacture,” Journal of Alloys and Compounds, vol. 727, pp. 821-831, 2017. [CrossRef] [Google Scholar]
- T. Igarashi, “Strengthening and toughening of molybdenum by carbide particles,” Journal of the Japan Society of Powder and Powder Metallurgy, vol. 49, no. 3, pp. 163-171, 2002. [CrossRef] [Google Scholar]
- X. Chen, R. Li, B. Li, J. Wang, Y. Gong, T. Wang, and G. Zhang, “High-strength molybdenum matrix composites with in-situ Mo2C by graphene addition,” Journal of Alloys and Compounds, vol. 820, pp. 153401, 2020/04/15/, 2020. [CrossRef] [Google Scholar]
- M. S. Kumar, S. R. Begum, M. Vasumathi, C. C. Nguyen, and Q. Van Le, “Influence of molybdenum content on the microstructure of spark plasma sintered titanium alloys,” Synthesis and Sintering, vol. 1, no. 1, pp. 41-47, 2021. [CrossRef] [Google Scholar]
- M. Rajadurai, A. Muthuchamy, A. R. Annamalai, D. K. Agrawal, and C.-P. Jen, “Effect of Molybdenum (Mo) addition on phase composition, microstructure, and mechanical properties of pre-alloyed Ti6Al4V using spark plasma sintering technique,” Molecules, vol. 26, no. 10, pp. 2894, 2021. [CrossRef] [Google Scholar]
- J. L. Xu, S. C. Tao, L. Z. Bao, J. M. Luo, and Y. F. Zheng, “Effects of Mo contents on the microstructure, properties and cytocompatibility of the microwave sintered porous Ti-Mo alloys,” Materials Science and Engineering: C, vol. 97, pp. 156-165, 2019/04/01/, 2019. [CrossRef] [Google Scholar]
- T. R. Bieler, R. M. Trevino, and L. Zeng, “Alloys: Titanium,” Encyclopedia of Condensed Matter Physics (Second Edition), T. Chakraborty, ed., pp. 635-646, Oxford: Academic Press, 2005. [CrossRef] [Google Scholar]
- F. An, B. Zhang, Y. Yan, and L. Wang, “Effect of vanadium contents on microstructure and mechanical properties of Ti–6Al–xV components produced by wire+ Arc additive manufacturing,” Materials Transactions, vol. 62, no. 8, pp. 1071-1078, 2021. [CrossRef] [Google Scholar]
- E.-S. M. Sherif, H. S. Abdo, and N. H. Alharthi, “Beneficial effects of vanadium additions on the corrosion of Ti6AlxV alloys in chloride solutions,” Metals, vol. 10, no. 2, pp. 264, 2020. [CrossRef] [Google Scholar]
- M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants–a review,” Progress in materials science, vol. 54, no. 3, pp. 397-425, 2009. [CrossRef] [Google Scholar]
- L. Fikeni, K. A. Annan, K. Mutombo, and R. Machaka, “Effect of Nb content on the microstructure and mechanical properties of binary Ti-Nb alloys,” Materials Today: Proceedings, vol. 38, pp. 913-917, 2021/01/01/, 2021. [CrossRef] [Google Scholar]
- M.-K. Han, J.-Y. Kim, M.-J. Hwang, H.-J. Song, and Y.-J. Park, “Effect of Nb on the microstructure, mechanical properties, corrosion behavior, and cytotoxicity of Ti-Nb alloys,” Materials, vol. 8, no. 9, pp. 5986-6003, 2015. [CrossRef] [Google Scholar]
- Y. Zhang, D. Sun, J. Cheng, J. K. H. Tsoi, and J. Chen, “Mechanical and biological properties of Ti–(0–25 wt%) Nb alloys for biomedical implants application,” Regenerative biomaterials, vol. 7, no. 1, pp. 119-127, 2020. [CrossRef] [Google Scholar]
- Y. Yamabe-Mitarai, K. Shimagami, H. Masuyama, T. Matsunaga, Y. Toda, and T. Ito, Creep Behavior of Near-α Ti-Al-Nb-Zr Alloys, 2019. [Google Scholar]
- T. R. Bieler, R. M. Trevino, and L. Zeng, “Alloys: Titanium,” Encyclopedia of Condensed Matter Physics, F. Bassani, G. L. Liedl and P. Wyder, eds., pp. 65-76, Oxford: Elsevier, 2005. [CrossRef] [Google Scholar]
- A. K. Gogia, “High-temperature titanium alloys,” Defence Science Journal, vol. 55, no. 2, pp. 149-173, 2005. [CrossRef] [Google Scholar]
- J. Hernandez-Sandoval, A. M. Samuel, S. Valtierra, and F. H. Samuel, “Thermal analysis for detection of Zr-rich phases in Al–Si–Cu–Mg 354-type alloys,” International Journal of Metalcasting, vol. 11, pp. 428-439, 2017. [CrossRef] [Google Scholar]
- M. Jayaprakash, D. H. Ping, and Y. Yamabe-Mitarai, “Effect of Zr and Si addition on high temperature mechanical properties of near-α Ti–Al–Zr–Sn based alloys,” Materials Science and Engineering: A, vol. 612, pp. 456-461, 2014/08/26/, 2014. [CrossRef] [Google Scholar]
- K. V. Sai Srinadh, N. Singh, and V. Singh, “Role of Ti 3 Al/silicides on tensile properties of Timetal 834 at various temperatures,” Bulletin of Materials Science, vol. 30, pp. 595-600, 2007. [CrossRef] [Google Scholar]
- Z. Huvelin, C. Gouroglian, N. Horézana, and S. Naka, “Role of refractory elements in near-alpha titanium alloys on high temperature mechanical properties.” p. 04018. [Google Scholar]
- T. Sakamoto, H. Akiyama, S. Tange, and H. Takebe, “Age Hardening of Si- Bearing Near-α Titanium Alloy Ti–6Al–2.75 Sn–4Zr–0.4 Mo–0.45 Si (Ti-1100) with Two Kinds of Initial Phases,” Materials Transactions, vol. 64, no. 9, pp. 2246-2253, 2023. [CrossRef] [Google Scholar]
- Z. Q. Zhang, G. Z. Luo, Q. Hong, and G. J. Yang, “Microstructures observation and mechanical properties test of near alpha titanium alloy Ti600,” Journal of Aeronautical Materials, vol. 19, no. 4, pp. 6, 1999. [Google Scholar]
- K. Yue, J. Liu, H. Zhang, H. Yu, Y. Song, Q. Hu, Q. Wang, and R. Yang, “Precipitates and alloying elements distribution in near α titanium alloy Ti65,” Journal of Materials Science & Technology, vol. 36, pp. 91-96, 2020. [CrossRef] [Google Scholar]
- M. J. Garcia-Ramirez, R. Lopez-Sesenes, I. Rosales-Cadena, and J. G. Gonzalez-Rodriguez, “Corrosion behaviour of Ti–Ni–Al alloys in a simulated human body solution,” Journal of Materials Research and Technology, vol. 7, no. 3, pp. 223-230, 2018. [CrossRef] [Google Scholar]
- B. O. Pinto, J. E. Torrento, C. R. Grandini, E. L. Galindo, C. A. F. Pintão, A. A. Santos, P. N. Lisboa-Filho, F. M. L. Pontes, and D. R. N. Correa, “Development of Ti–Al–V alloys for usage as single-axis knee prostheses: evaluation of mechanical, corrosion, and tribocorrosion behaviors,” Scientific Reports, vol. 13, no. 1, pp. 4349, 2023. [CrossRef] [Google Scholar]
- Z. Z. Fang, J. D. Paramore, P. Sun, K. S. R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, and M. Free, “Powder metallurgy of titanium – past, present, and future,” International Materials Reviews, vol. 63, no. 7, pp. 407-459, 2018/10/03, 2018. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.