Issue |
MATEC Web Conf.
Volume 249, 2018
2018 5th International Conference on Mechanical, Materials and Manufacturing (ICMMM 2018)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 5 | |
Section | Functional Material Design and Development | |
DOI | https://doi.org/10.1051/matecconf/201824901004 | |
Published online | 10 December 2018 |
Comparative study of spark plasma sintering features on the densification of Ni-Cr binary alloys
1 Institute of NanoEngineering Research Institute, Department of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and Built environment, Tshwane University of Technology, Pretoria, South Africa.
2 Center for NanoEngineering and Tribocorrosion, School of Mining, Metallurgical and Chemical Engineering, University of Johannesburg, Doornfontein Campus, 2028 Johannesburg, South Africa.
Spark plasma sintering (SPS) has been widely regarded as an advanced powder consolidation technique hich helps in the development of array of engineering materials. Many have been reported in the literature about sintering parameters such as temperature, pressure, heating rate and holding time. However, little or no reports has been made on some of the intricate features such as process time(s), power SPS (KW), pressing speed (mm/min), and average pressing force (KN) on which intering parameters are directly related to. This study aims to investigate the behaviour of spark plasma sintered Ni-17Cr binary alloys with emphasis on the densification, hardness value and spark plasma sintering features such as process time (s), power SPS (KW), pressing speed (mm/min), and the average pressing force (KN). Nickel and chromium powders were milled individually using High energy ball milling for durations of 5hr, 10 hr prior to mixing and subsequent sintering. The sintered 5 hr and 10 hr milled Ni-17Cr binary alloys attained relative densities of 98.72 % and 99.1 % respectively. The Microstructural morphology was examined using Scanning electron microscopy (SEM). The sintered 10 hr milled Ni-17Cr binary alloy revealed the higher hardness.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.