Open Access
Issue
MATEC Web Conf.
Volume 406, 2024
2024 RAPDASA-RobMech-PRASA-AMI Conference: Unlocking Advanced Manufacturing - The 25th Annual International RAPDASA Conference, joined by RobMech, PRASA and AMI, hosted by Stellenbosch University and Nelson Mandela University
Article Number 03009
Number of page(s) 9
Section Material Development
DOI https://doi.org/10.1051/matecconf/202440603009
Published online 09 December 2024
  1. F. Khan and M. Tanaka,Designing smart biomaterials for tissue engineering. Int. J. Mol. Sci., 19(1): p. 17(2017) [CrossRef] [Google Scholar]
  2. A. R. Armiento, et al.,Functional biomaterials for bone regeneration: a lesson in complex biology. Adv. Funct. Mater., 30(44): p. 1909874(2020) [CrossRef] [Google Scholar]
  3. S. Todros, M. Todesco, and A. Bagno,Biomaterials and their biomedical applications: From replacement to regeneration. Processes, 9(11): p. 1949(2021) [CrossRef] [Google Scholar]
  4. C. Jain, P. Surabhi, and K. Marathe,Critical review on the developments in polymer composite materials for biomedical implants. J. Biomater. Sci. Polym. Ed., 34(7): p. 893-917(2023) [CrossRef] [Google Scholar]
  5. M. Geetha, et al.,Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Prog. Mater. Sci., 54(3): p. 397-425(2009) [CrossRef] [Google Scholar]
  6. M. J. Jackson, et al.,Titanium and titanium alloy applications in medicine. Surgical tools and medical devices: p. 475-517(2016) [Google Scholar]
  7. S. Mutha, Evolution and Principles of Metals and Alloys Used in Orthopedic Implantology, in Handbook of Orthopaedic Trauma Implantology. 2022, Springer. p. 1-19. [Google Scholar]
  8. S. Mutha, Evolution and Principles of Metals and Alloys Used in Orthopaedic Trauma Implantology, in Handbook of Orthopaedic Trauma Implantology. 2023, Springer. p. 609-627. [CrossRef] [Google Scholar]
  9. L. S. Morais, et al.,Titanium alloy mini-implants for orthodontic anchorage: immediate loading and metal ion release. Acta Biomater., 3(3): p. 331-339(2007) [CrossRef] [Google Scholar]
  10. Y. Zhang, et al., effect of vanadium released from micro-arc oxidized porous Ti6Al4V on biocompatibility in orthopedic applications. Colloids Surf. B. Biointerfaces, 169: p. 366-374(2018) [CrossRef] [Google Scholar]
  11. S. Guan, et al.,Enhanced cytocompatibility of Ti6Al4V alloy through selective removal of Al and V from the hierarchical micro-arc oxidation coating. JASS, 541: p. 148547(2021) [Google Scholar]
  12. J. Toledano-Serrabona, et al.,Physicochemical and biological characterization of Ti6Al4V particles obtained by implantoplasty: an in vitro study. Part I. Materials, 14(21): p. 6507(2021) [CrossRef] [Google Scholar]
  13. S. Gautam, et al.,Recent advancements in nanomaterials for biomedical implants. Adv. Biomed. Eng., 3: p. 100029(2022) [CrossRef] [Google Scholar]
  14. Y. M. Ahmed, et al.,Titanium and its alloy. International Journal of Science and Research, 3(10): p. 1351-1361(2014) [Google Scholar]
  15. A. O. Abdalla, et al.,Iron as a Promising alloying element for the cost reduction of titanium alloys: a review. Applied Mechanics and Materials, 864: p. 147-153(2017) [CrossRef] [Google Scholar]
  16. F. N. Ahmad and H. Zuhailawati,A brief review on the properties of titanium as a metallic biomaterials. Int. J. Electroactive Mater, 8: p. 63-67(2020) [Google Scholar]
  17. P. Sochacka, A. Miklaszewski, and M. Jurczyk,Development of β-type Ti-x at.% Mo alloys by mechanical alloying and powder metallurgy: Phase evolution and mechanical properties (10≤ x≤ 35). J. Alloys Compd., 776: p. 370-378(2019) [CrossRef] [Google Scholar]
  18. M. V. S. Narnaware,Metallic biomaterials for human body implant: a review study. International Journal of Science & Engineering Development Research, 2(6): p. 220-229(2017) [Google Scholar]
  19. C. Siemers, et al., Aluminum-and vanadium-free titanium alloys for application in medical engineering, in Titanium in medical and dental applications. 2018, Elsevier. p. 477-492. [Google Scholar]
  20. K. A. Whitehead, et al.,The Effects of Surface Properties on the Antimicrobial Activity and Biotoxicity of Metal Biomaterials and Coatings. (2021) [Google Scholar]
  21. Y.-L. Zhou and D.-M. Luo,Microstructures and mechanical properties of Ti–Mo alloys cold-rolled and heat treated. Mater. Charact., 62(10): p. 931-937(2011) [CrossRef] [Google Scholar]
  22. G. Kanapaakala and S. Venkatesan,A review on various phases and alloy design methods of β-Ti alloys for biomedical applications. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 237(7): p. 1497-1515(2023) [CrossRef] [Google Scholar]
  23. E. Eisenbarth, et al.,Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials, 25(26): p. 5705-5713(2004) [CrossRef] [Google Scholar]
  24. Y. Al-Zain, et al.,Shape memory properties of Ti–Nb–Mo biomedical alloys. Acta Mater., 58(12): p. 4212-4223(2010) [CrossRef] [Google Scholar]
  25. L.-H. Ye, et al.,Phase stability of TiAl-X (X= V, Nb, Ta, Cr, Mo, W, and Mn) alloys. J. Alloys Compd., 819: p. 153291(2020) [CrossRef] [Google Scholar]
  26. J.-W. Lu, et al.,Microstructure and beta grain growth behavior of Ti–Mo alloys solution treated. Mater. Charact., 84: p. 105-111(2013) [CrossRef] [Google Scholar]
  27. N. Moshokoa, et al. Effects of Mo content on the microstructural and mechanical properties of as-cast Ti-Mo alloys. in IOP Conference Series: Materials Science and Engineering. 2019. IOP Publishing. [Google Scholar]
  28. T. Maeshima, et al., effect of heat treatment on shape memory effect and superelasticity in Ti–Mo–Sn alloys. J. Mater. Eng, 438: p. 844-847(2006) [CrossRef] [Google Scholar]
  29. M. S. Baltatu, et al., effect of heat treatment on some titanium alloys used as biomaterials. Applied Sciences, 12(21): p. 11241(2022) [CrossRef] [Google Scholar]
  30. G. C. Cardoso, et al., effect of thermomechanical treatments on microstructure, phase composition, vickers microhardness, and Young's Modulus of Ti-xNb-5Mo alloys for biomedical applications. Metals, 12(5): p. 788(2022) [CrossRef] [Google Scholar]
  31. L. Kang and C. Yang,A review on high‐strength titanium alloys: microstructure, strengthening, and properties. Advanced Engineering Materials, 21(8): p. 1801359(2019) [CrossRef] [Google Scholar]
  32. G. Shao and P. Tsakiropoulos,Prediction of ω phase formation in Ti–Al–X alloys. J. Mater. Eng, 329: p. 914-919(2002) [CrossRef] [Google Scholar]
  33. P. Ji, et al.,Controlling the corrosion behavior of Ti-Zr alloy by tuning the α/β phase volume fraction and morphology of β phase. J. Alloys Compd., 825: p. 154153(2020) [CrossRef] [Google Scholar]
  34. C. Wang, et al.,Martensitic microstructures and mechanical properties of as- quenched metastable β-type Ti–Mo alloys. J. Mater. Sci., 51: p. 6886-6896(2016) [CrossRef] [Google Scholar]
  35. H. Liu, et al., microstructure, mechanical properties and corrosion behaviors of biomedical Ti-Zr-Mo-xMn alloys for dental application. Corros. Sci., 161: p. 108195(2019) [CrossRef] [Google Scholar]
  36. C. Zhao, X. Zhang, and P. Cao,Mechanical and electrochemical characterization of Ti–12Mo–5Zr alloy for biomedical application. J. Alloys Compd., 509(32): p. 8235-8238(2011) [CrossRef] [Google Scholar]
  37. P. S. Nnamchi, et al.,Mechanical and electrochemical characterisation of new Ti– Mo–Nb–Zr alloys for biomedical applications. J. Mech. Behav. Biomed. Mater., 60: p. 68-77(2016) [CrossRef] [Google Scholar]
  38. T. Li, et al.,New insights into the phase transformations to isothermal ω and ω- assisted α in near β-Ti alloys. Acta Mater., 106: p. 353-366(2016) [CrossRef] [Google Scholar]
  39. J. Ballor, et al.,A review of the metastable omega phase in beta titanium alloys: the phase transformation mechanisms and its effect on mechanical properties. International Materials Reviews, 68(1): p. 26-45(2023) [CrossRef] [Google Scholar]
  40. O. Ivasishin, et al.,Aging response of coarse-and fine-grained β titanium alloys. J. Mater. Eng, 405(1-2): p. 296-305(2005) [CrossRef] [Google Scholar]
  41. F. F. Cardoso, et al.,Ti–Mo alloys employed as biomaterials: Effects of composition and aging heat treatment on microstructure and mechanical behavior. J. Mech. Behav. Biomed. Mater., 32: p. 31-38(2014) [CrossRef] [Google Scholar]
  42. J. Hu, et al.,Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science, 355(6331): p. 1292-1296(2017) [CrossRef] [Google Scholar]
  43. P. a. B. Kuroda, et al.,The Effect of Solution Heat Treatment Temperature on Phase Transformations, Microstructure and Properties of Ti-25Ta-x Zr Alloys Used as a Biomaterial. JMEP, 29: p. 2410-2417(2020) [CrossRef] [Google Scholar]
  44. P. a. B. Kuroda, et al.,The Effect of Solution Heat Treatment Time on the Phase Formation and Selected Mechanical Properties of Ti-25Ta-x Zr Alloys for Application as Biomaterials. JMEP, 30(8): p. 5905-5913(2021) [CrossRef] [Google Scholar]
  45. V. Richter and M. Ruthendorf,On hardness and toughness of ultrafine and nanocrystalline hard materials. Int. J. Refract. Hard Met, 17(1-3): p. 141-152(1999) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.