Open Access
Issue
MATEC Web Conf.
Volume 406, 2024
2024 RAPDASA-RobMech-PRASA-AMI Conference: Unlocking Advanced Manufacturing - The 25th Annual International RAPDASA Conference, joined by RobMech, PRASA and AMI, hosted by Stellenbosch University and Nelson Mandela University
Article Number 03008
Number of page(s) 10
Section Material Development
DOI https://doi.org/10.1051/matecconf/202440603008
Published online 09 December 2024
  1. G.B. Olson, Computational design of hierarchically structured materials, Science (1979) 277 (1997) 1237–1242. https://doi.org/10.1126/science.277.5330.1237. [Google Scholar]
  2. K. Alberi, M.B. Nardelli, A. Zakutayev, L. Mitas, S. Curtarolo, A. Jain, M. Fornari, N. Marzari, I. Takeuchi, M.L. Green, M. Kanatzidis, M.F. Toney, S. Butenko, B. Meredig, S. Lany, U. Kattner, A. Davydov, E.S. Toberer, V. Stevanovic, A. Walsh, N.-G. Park, A. Aspuru-Guzik, D.P. Tabor, J. Nelson, J. Murphy, A. Setlur, J. Gregoire, H. Li, R. Xiao, A. Ludwig, L.W. Martin, A.M. Rappe, S.-H. Wei, J. Perkins, The 2019 materials by design roadmap, J Phys D Appl Phys 52 (2019) 013001. https://doi.org/10.1088/1361-6463/aad926. [CrossRef] [Google Scholar]
  3. F. Auricchio, R.L. Taylor, J. Lubliner, Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior, Comput Methods Appl Mech Eng 146 (1997) 281–312. https://doi.org/10.1016/S0045-7825(96)01232-7. [CrossRef] [Google Scholar]
  4. Y.S. Meng, M.E. Arroyo-de Dompablo, First principles computational materials design for energy storage materials in lithium ion batteries, Energy Environ Sci 2 (2009) 589. https://doi.org/10.1039/b901825e. [CrossRef] [Google Scholar]
  5. A.A. Luo, Material design and development: From classical thermodynamics to CALPHAD and ICME approaches, Calphad 50 (2015) 6–22. https://doi.org/10.1016/j.calphad.2015.04.002. [CrossRef] [Google Scholar]
  6. W. Yi Wang, J. Li, W. Liu, Z.-K. Liu, Integrated computational materials engineering for advanced materials: A brief review, Comput Mater Sci 158 (2019) 42–48. https://doi.org/10.1016/j.commatsci.2018.11.001. [CrossRef] [Google Scholar]
  7. G.B. Olson, Computational Design of Hierarchically Structured Materials, Science (1979) 277 (1997) 1237–1242. https://doi.org/10.1126/science.277.5330.1237. [Google Scholar]
  8. E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys, Nat Rev Mater 4 (2019) 515–534. https://doi.org/10.1038/s41578-019-0121-4. [CrossRef] [Google Scholar]
  9. M.R. Louthan, G.R. Caskey, J.A. Donovan, D.E. Rawl, Hydrogen embrittlement of metals, Materials Science and Engineering 10 (1972) 357–368. https://doi.org/10.1016/0025-5416(72)90109-7. [CrossRef] [Google Scholar]
  10. P. Kumar, S. Huang, D.H. Cook, K. Chen, U. Ramamurty, X. Tan, R.O. Ritchie, A strong fracture-resistant high-entropy alloy with nano-bridged honeycomb microstructure intrinsically toughened by 3D-printing, Nat Commun 15 (2024) 841. https://doi.org/10.1038/s41467-024-45178-2. [CrossRef] [Google Scholar]
  11. N. Ali, L. Zhang, D. Liu, H. Zhou, K. Sanaullah, C. Zhang, J. Chu, Y. Nian, J. Cheng, Strengthening mechanisms in high entropy alloys: A review, Mater Today Commun 33 (2022). https://doi.org/10.1016/j.mtcomm.2022.104686. [Google Scholar]
  12. I. Basu, J.T.M. De Hosson, Strengthening mechanisms in high entropy alloys: Fundamental issues, Scr Mater 187 (2020) 148–156. https://doi.org/10.1016/j.scriptamat.2020.06.019. [CrossRef] [Google Scholar]
  13. H. Wipf, Solubility and Diffusion of Hydrogen in Pure Metals and Alloys, Phys Scr T94 (2001) 43. https://doi.org/10.1238/Physica.Topical.094a00043. [CrossRef] [Google Scholar]
  14. A. Parakh, M. Vaidya, N. Kumar, R. Chetty, B.S. Murty, Effect of crystal structure and grain size on corrosion properties of AlCoCrFeNi high entropy alloy, J Alloys Compd 863 (2021) 158056. https://doi.org/10.1016/j.jallcom.2020.158056. [CrossRef] [Google Scholar]
  15. Q. Wu, M.A. Zikry, Prediction of diffusion assisted hydrogen embrittlement failure in high strength martensitic steels, J Mech Phys Solids 85 (2015) 143–159. https://doi.org/10.1016/j.jmps.2015.08.010. [CrossRef] [Google Scholar]
  16. A. Poonia, M. Kishor, K.P.R. Ayyagari, Designing of high entropy alloys with high hardness: a metaheuristic approach, Sci Rep 14 (2024). https://doi.org/10.1038/s41598-024-57094-y. [CrossRef] [Google Scholar]
  17. X. gang Chen, G. Qin, X. feng Gao, R. run Chen, Q. Song, H. zhi Cui, Strengthening CoCrFeNi high-entropy alloy by Laves and boride phases, China Foundry 19 (2022) 457–463. https://doi.org/10.1007/s41230-022-1007-4. [CrossRef] [Google Scholar]
  18. S.W. Wu, G. Wang, J. Yi, Y.D. Jia, I. Hussain, Q.J. Zhai, P.K. Liaw, Strong grain- size effect on deformation twinning of an Al0.1CoCrFeNi high-entropy alloy, Mater Res Lett 5 (2017) 276–283. https://doi.org/10.1080/21663831.2016.1257514. [CrossRef] [Google Scholar]
  19. S. Muskeri, B. Gwalani, S. Jha, A. Yu, P.A. Jannotti, R.S. Haridas, B.E. Schuster, J.T. Lloyd, R.S. Mishra, S. Mukherjee, Excellent ballistic impact resistance of Al0.3CoCrFeNi multi-principal element alloy with unique bimodal microstructure, Sci Rep 11 (2021). https://doi.org/10.1038/s41598-021-02209-y. [CrossRef] [Google Scholar]
  20. Scheil Equations Simulations - Thermo-Calc Software, (n.d.). https://thermocalc.com/products/thermo-calc/scheil-solidification-simulations/ (accessed September 10, 2024). [Google Scholar]
  21. R.P.V.J.L.H. ’Richard W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 5th Edition, 5th ed., Wiley, 2012. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.