Open Access
Issue |
MATEC Web Conf.
Volume 406, 2024
2024 RAPDASA-RobMech-PRASA-AMI Conference: Unlocking Advanced Manufacturing - The 25th Annual International RAPDASA Conference, joined by RobMech, PRASA and AMI, hosted by Stellenbosch University and Nelson Mandela University
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 13 | |
Section | Material Development | |
DOI | https://doi.org/10.1051/matecconf/202440603003 | |
Published online | 09 December 2024 |
- P. S. Nnamchi, R. E. Njoku, and O. A. Fasuba, “Alloy design and property evaluation of Ti-Mo-Nb-Sn for biomedical applications,” 2013. [Online]. Available: www.nijotech.com [Google Scholar]
- K. Prasad et al., “Metallic biomaterials: Current challenges and opportunities,” Materials, vol. 10, no. 8. MDPI AG, Jul. 31, 2017. doi: 10.3390/ma10080884. [CrossRef] [Google Scholar]
- M. Bahraminasab, M. B. Nasab, and M. R. Hassan, “Metallic Biomaterials of Knee and Hip-A Review,” 2010. [Online]. Available: http://www.sbaoi.org [Google Scholar]
- S. Li and T. hyun Nam, “Superelasticity and tensile strength of Ti-Zr-Nb-Sn alloys with high Zr content for biomedical applications,” Intermetallics (Barking), vol. 112, no. June, p. 106545, 2019, doi: 10.1016/j.intermet.2019.106545. [CrossRef] [Google Scholar]
- A. R. Vieira Nunes, S. Borborema, L. S. Araújo, L. Malet, J. Dille, and L. Henrique de Almeida, “Influence of thermo-mechanical processing on structure and mechanical properties of a new metastable β Ti–29Nb–2Mo–6Zr alloy with low Young’s modulus,” J Alloys Compd, vol. 820, p. 153078, 2020, doi: 10.1016/j.jallcom.2019.153078. [CrossRef] [Google Scholar]
- A. Dehghan-Manshadi, D. Kent, D. StJohn, and M. Dargusch, “Properties of Powder Metallurgy-Fabricated Oxygen-Containing Beta Ti–Nb–Mo–Sn–Fe Alloys for Biomedical Applications,” Adv Eng Mater, vol. 22, no. 3, pp. 1–6, 2020, doi: 10.1002/adem.201901229. [CrossRef] [Google Scholar]
- K. S. Katti, “Biomaterials in total joint replacement,” Colloids Surf B Biointerfaces, vol. 39, no. 3, pp. 133–142, Dec. 2004, doi: 10.1016/j.colsurfb.2003.12.002. [CrossRef] [Google Scholar]
- M. Kaur and K. Singh, “Review on titanium and titanium based alloys as biomaterials for orthopaedic applications,” Materials Science and Engineering C, vol. 102. Elsevier Ltd, pp. 844–862, Sep. 01, 2019. doi: 10.1016/j.msec.2019.04.064. [CrossRef] [Google Scholar]
- H. N. Yu, H. C. Hsu, S. C. Wu, S. K. Hsu, and W. F. Ho, “Structure and mechanical properties of as-cast Ti-5Sn-xMo alloys,” Materials, vol. 10, no. 5, 2017, doi: 10.3390/ma10050458. [Google Scholar]
- M. Niinomi, “Design and development of metallic biomaterials with biological and mechanical biocompatibility,” Journal of Biomedical Materials Research - Part A, vol. 107, no. 5. John Wiley and Sons Inc., pp. 944–954, May 01, 2019. doi: 10.1002/jbm.a.36667. [CrossRef] [Google Scholar]
- R. Jha and G. S. Dulikravich, “Discovery of new Ti-based alloys aimed at avoiding/minimizing formation of α” and ω-phase using calphad and artificial intelligence,” Metals (Basel), vol. 11, no. 1, pp. 1–15, Jan. 2021, doi: 10.3390/met11010015. [Google Scholar]
- Y. Qu et al., “Ti-24Nb-4Zr-8Sn Alloy Pedicle Screw Improves Internal Vertebral Fixation by Reducing Stress-Shielding Effects in a Porcine Model,” Biomed Res Int, vol. 2018, 2018, doi: 10.1155/2018/8639648. [Google Scholar]
- A. Raquel, V. Nunes, S. Borborema, C. Angelo, and L. Sales, “Microstructure and Mechanical Properties of Ti-12Mo-8Nb Alloy Hot Swaged and Treated for Orthopedic Applications,” vol. 20, pp. 526–531, 2017. [Google Scholar]
- A. Dehghan-Manshadi, D. Kent, D. StJohn, and M. Dargusch, “Properties of Powder Metallurgy-Fabricated Oxygen-Containing Beta Ti–Nb–Mo–Sn–Fe Alloys for Biomedical Applications,” Adv Eng Mater, vol. 22, no. 3, Mar. 2020, doi: 10.1002/adem.201901229. [CrossRef] [Google Scholar]
- N. Moshokoa, L. Raganya, B. Obadele, P. Olubambi, and R. Machaka, “Effects of Mo content on the microstructural and mechanical properties of as-cast Ti-Mo alloys,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Nov. 2019. doi: 10.1088/1757-899X/655/1/012015. [Google Scholar]
- M. Nakai, M. Niinomi, X. Zhao, and X. Zhao, “Self-adjustment of Young’s modulus in biomedical titanium alloys during orthopaedic operation,” Mater Lett, vol. 65, no. 4, pp. 688–690, Feb. 2011, doi: 10.1016/j.matlet.2010.11.006. [CrossRef] [Google Scholar]
- D. C. Zhang, S. Yang, M. Wei, Y. F. Mao, C. G. Tan, and J. G. Lin, “Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn Alloys,” J Mech Behav Biomed Mater, vol. 13, pp. 156–165, Sep. 2012, doi: 10.1016/j.jmbbm.2012.04.017. [CrossRef] [Google Scholar]
- F. Ahmad, H. Zuhailawati, and F. N. Ahmad, “A Brief Review on the Properties of Titanium as a Metallic Biomaterials,” International Journal of Electroactive Materials, pp. 63–67, 2020, [Online]. Available: https://www.researchgate.net/publication/346493744 [Google Scholar]
- Q. Wang, C. Ji, Y. Wang, J. Qiang, and C. Dong, “β-Ti Alloys with Low Young’s Moduli Interpreted by Cluster-Plus-Glue-Atom Model,” Metallurgical and Materials Transactions A, vol. 44, no. 4, pp. 1872–1879, Apr. 2013, doi: 10.1007/s11661-012-1523-8. [CrossRef] [Google Scholar]
- N. Muchavi, L. Raganya, R. Machaka, G. Motsi, and E. Makhatha, “INFLUENCE OF Sn ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ti-Mo-Nb ALLOYS FOR ORTHOPAEDIC APPLICATIONS,” South African Journal of Industrial Engineering, vol. 33, no. 3, pp. 318–325, 2022, doi: 10.7166/33-3-2806. [Google Scholar]
- M. L. Raganya, “Design of Ti-Mo-Nb-Zr alloys with low elastic modulus using cluster-plus-glue atom model,” 2020. [Google Scholar]
- F. Jiang, C. Pang, Z. Zheng, Q. Wang, J. Zhao, and C. Dong, “First-Principles Calculations for Stable β-Ti–Mo Alloys Using Cluster-Plus-Glue-Atom Model,” Acta Metallurgica Sinica (English Letters), vol. 33, no. 7, pp. 968–974, Jul. 2020, doi: 10.1007/s40195-020-01006-2. [CrossRef] [Google Scholar]
- C. Dong et al., “From clusters to phase diagrams: Composition rules of quasicrystals and bulk metallic glasses,” Journal of Physics D: Applied Physics, vol. 40, no. 15. Aug. 08, 2007. doi: 10.1088/0022-3727/40/15/R01. [Google Scholar]
- B. Jiang et al., “Effects of Nb and Zr on structural stabilities of Ti-Mo-Sn-based alloys with low modulus,” Materials Science and Engineering A, vol. 687, pp. 1–7, Feb. 2017, doi: 10.1016/j.msea.2017.01.047. [CrossRef] [Google Scholar]
- Q. Wang et al., “Microstructures and Stability Origins of β-(Ti,Zr)-(Mo,Sn)-Nb Alloys with Low Young’s Modulus,” Metallurgical and Materials Transactions A, vol. 46, no. 9, pp. 3924–3931, Sep. 2015, doi: 10.1007/s11661-015-3011-4. [CrossRef] [Google Scholar]
- Q. Wang, C. Ji, Y. Wang, J. Qiang, and C. Dong, “β-Ti alloys with low young’s moduli interpreted by cluster-plus-glue-atom model,” Metall Mater Trans A Phys Metall Mater Sci, vol. 44, no. 4, pp. 1872–1879, Apr. 2013, doi: 10.1007/s11661- 012-1523-8. [CrossRef] [Google Scholar]
- C. Pang, B. Jiang, Y. Shi, Q. Wang, and C. Dong, “Cluster-plus-glue-atom model and universal composition formulas [cluster](glue atom)x for BCC solid solution alloys,” J Alloys Compd, vol. 652, pp. 63–69, Dec. 2015, doi: 10.1016/j.jallcom.2015.08.209. [CrossRef] [Google Scholar]
- S. Ozan, J. Lin, Y. Li, and C. Wen, “New Ti-Ta-Zr-Nb alloys with ultrahigh strength for potential orthopedic implant applications,” J Mech Behav Biomed Mater, vol. 75, pp. 119–127, Nov. 2017, doi: 10.1016/j.jmbbm.2017.07.011. [CrossRef] [Google Scholar]
- J. Lin et al., “Effects of solution treatment and aging on the microstructure, mechanical properties, and corrosion resistance of a β type Ti–Ta–Hf–Zr alloy,” RSC Adv, vol. 7, no. 20, pp. 12309–12317, 2017, doi: 10.1039/C6RA28464G. [Google Scholar]
- T. Zhou, G. Itoh, Y. Motohashi, and M. Niinomi, “Microstructural Modification in a Beta Titanium Alloy for Implant Applications.” [Google Scholar]
- X. H. Min, K. Tsuzaki, S. Emura, and K. Tsuchiya, “Heterogeneous twin formation and its effect on tensile properties in Ti-Mo based β titanium alloys,” Materials Science and Engineering A, vol. 554, pp. 53–60, Sep. 2012, doi: 10.1016/j.msea.2012.06.009. [CrossRef] [Google Scholar]
- S. Emura, X. Ji, X. Min, and K. Tsuchiya, “Effects of Mo segregation on Charpy absorbed energy in Ti-12Mo alloys,” MATEC Web of Conferences, vol. 321, p. 11050, 2020, doi: 10.1051/matecconf/202032111050. [CrossRef] [EDP Sciences] [Google Scholar]
- J. Ruzic, S. Emura, X. Ji, and I. Watanabe, “Mo segregation and distribution in Ti– Mo alloy investigated using nanoindentation,” Materials Science and Engineering A, vol. 718, pp. 48–55, Mar. 2018, doi: 10.1016/j.msea.2018.01.098. [CrossRef] [Google Scholar]
- X. Liu, G. Feng, Y. Zhou, and Q. Fan, “Macrosegregation and the underlying mechanism in Ti-6.5Al-1.0Cr-0.5Fe-6.0Mo-3.0Sn-4.0Zr alloy,” Progress in Natural Science: Materials International, vol. 29, no. 2, pp. 224–230, Apr. 2019, doi: 10.1016/j.pnsc.2019.02.006. [CrossRef] [Google Scholar]
- M. Bönisch et al., “Giant thermal expansion and α-precipitation pathways in Ti- Alloys,” Nat Commun, vol. 8, no. 1, pp. 1–9, 2017, doi: 10.1038/s41467-017- 01578-1. [CrossRef] [PubMed] [Google Scholar]
- E. Hildyard, “An investigation into the influence of microstructural condition on the superelastic behaviour in Ti-Nb-based alloys .,” University of Cambridge, 2019. [Google Scholar]
- N. Moshokoa, L. Raganya, B. A. Obadele, R. Machaka, and M. E. Makhatha, “Microstructural and mechanical properties of Ti-Mo alloys designed by the cluster plus glue atom model for biomedical application,” The International Journal of Advanced Manufacturing Technology, pp. 1237–1246, 2020, doi: 10.1007/s00170- 020-06208-7/Published. [Google Scholar]
- P. E. L. Moraes, R. J. Contieri, E. S. N. Lopes, A. Robin, and R. Caram, “Effects of Sn addition on the microstructure, mechanical properties and corrosion behavior of Ti-Nb-Sn alloys,” Mater Charact, vol. 96, pp. 273–281, 2014, doi: 10.1016/j.matchar.2014.08.014. [CrossRef] [Google Scholar]
- J. R. S. Martins, R. O. Araújo, R. A. Nogueira, and C. R. Grandini, “Internal friction and microstructure of ti and ti-mo alloys containing oxygen,” Archives of Metallurgy and Materials, vol. 61, no. 1, pp. 25–30, 2016, doi: 10.1515/amm-2016- 0011. [CrossRef] [Google Scholar]
- P. Fernandes et al., “Fabrication of low-cost beta-type Ti – Mn alloys for biomedical applications by metal injection molding process and their mechanical properties,” vol. 59, pp. 497–507, 2016, doi: 10.1016/j.jmbbm.2016.02.035. [Google Scholar]
- R. Jha and G. S. Dulikravich, “Discovery of new Ti-based alloys aimed at avoiding/minimizing formation of α” and ω-phase using calphad and artificial intelligence,” Metals (Basel), vol. 11, no. 1, pp. 1–15, 2021, doi: 10.3390/met11010015. [Google Scholar]
- F. Xie, H. Yang, J. Huang, J. Yu, and X. He, “Sn Content Effects on Microstructure, Mechanical Properties and Tribological Behavior of Biomedical Ti- Nb-Sn Alloys Fabricated by Powder Metallurgy,” Metals (Basel), vol. 12, no. 2, Feb. 2022, doi: 10.3390/met12020255. [Google Scholar]
- Y. L. Hao, S. J. Li, S. Y. Sun, and R. Yang, “Effect of Zr and Sn on Young’s modulus and superelasticity of Ti-Nb-based alloys,” Materials Science and Engineering A, vol. 441, no. 1–2, pp. 112–118, Dec. 2006, doi: 10.1016/j.msea.2006.09.051. [CrossRef] [Google Scholar]
- D. C. Zhang, S. Yang, M. Wei, Y. F. Mao, C. G. Tan, and J. G. Lin, “Effect of Sn addition on the microstructure and superelasticity in Ti – Nb – Mo – Sn Alloys,” J Mech Behav Biomed Mater, vol. 13, pp. 156–165, 2012, doi: 10.1016/j.jmbbm.2012.04.017. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.