Open Access
Issue |
MATEC Web Conf.
Volume 406, 2024
2024 RAPDASA-RobMech-PRASA-AMI Conference: Unlocking Advanced Manufacturing - The 25th Annual International RAPDASA Conference, joined by RobMech, PRASA and AMI, hosted by Stellenbosch University and Nelson Mandela University
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 10 | |
Section | Material Development | |
DOI | https://doi.org/10.1051/matecconf/202440603002 | |
Published online | 09 December 2024 |
- Kolli R. P. and Devaraj, A. “A review of metastable beta titanium alloys,” Jul. 01, 2018, MDPI AG. doi: 10.3390/met8070506. [Google Scholar]
- Zhang L. C. and Chen, L. Y. “A Review on Biomedical Titanium Alloys: Recent Progress and Prospect,” Apr. 01, 2019, Wiley-VCH Verlag. doi: 10.1002/adem.201801215. [Google Scholar]
- Du, Z. Xiao, S. Xu, L. Tian, J. Kong, F. and Chen, Y. “Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy,” Mater Des, vol. 55, pp. 183–190, 2014, doi: 10.1016/j.matdes.2013.09.070. [CrossRef] [Google Scholar]
- Dehghan-Manshadi A. and Dippenaar, R. J. “Development of α-phase morphologies during low temperature isothermal heat treatment of a Ti-5Al-5Mo-5V-3Cr alloy,” Materials Science and Engineering: A, vol. 528, no. 3, pp. 1833–1839, Jan. 2011, doi: 10.1016/j.msea.2010.09.061. [CrossRef] [Google Scholar]
- Ivasishin M. and Lutjering, G. “Influence of Grain Size·and Cooling Rate on the Fatigue Performance of Titanium Alloys.” [Google Scholar]
- Weiss I., Froes E. H., Eylon, D. and Welsch, G. E. “Modification of Alpha Morphology in Ti-6AI-4V by Thermomechanical Processing.” [Google Scholar]
- Weiss I. and Semiatin, S. L. “Thermomechanical processing of beta titanium alloys- an overview,” 1998. [Google Scholar]
- Dąbrowski, R. “The kinetics of phase transformations during continuous cooling of the Ti6Al4V alloy from the single-phase β range,” Archives of Metallurgy and Materials, vol. 56, no. 3, pp. 703–707, 2011, doi: 10.2478/v10172-011-0077-x. [CrossRef] [Google Scholar]
- Semiatin, S. L. Seetharaman, V. and Weiss, I. “The Thermomechanical Processing of Alpha/Beta Titanium Alloys.” [Google Scholar]
- Xu, J. Zeng, W. Zhao, Y. Sun, X. and Du, Z. “Influence of cooling rate following heat treatment on microstructure and phase transformation for a two-phase alloy,” J Alloys Compd, vol. 688, pp. 301–309, 2016, doi: 10.1016/j.jallcom.2016.07.107. [CrossRef] [Google Scholar]
- Lutjering, G. Williams, J. C. and Gysler, A. “Chapter 1 microstructure and mechanical properties of titanium alloys.” (Volume 2) (pp.1-77). 2000. [Google Scholar]
- Duerig, T. W. Terlinde, G. T. and Williams, J. C. “Phase Transformations and Tensile Properties of Ti-10V-2Fe-3AI.” [Google Scholar]
- Niinomi M., Kobayashi, T. Inagaki, I. and Thompson, A. W. “The Effect of Deformation-Induced Transformation on the Fracture Toughness of Commercial Titanium Alloys.” [Google Scholar]
- Tarzimoghadam, Z. Sandlöbes, S. Pradeep, K. G. and Raabe, D. “Microstructure design and mechanical properties in a near-α Ti-4Mo alloy,” Acta Mater, vol. 97, pp. 291–304, Jul. 2015, doi: 10.1016/j.actamat.2015.06.043. [CrossRef] [Google Scholar]
- Gupta, A. Khatirkar, R. K. Kumar, A. and Parihar, M. S. “Investigations on the effect of heating temperature and cooling rate on evolution of microstructure in an α + β titanium alloy,” J Mater Res, vol. 33, no. 8, pp. 946–957, Apr. 2018, doi: 10.1557/jmr.2018.54. [CrossRef] [Google Scholar]
- Afonso, C. R. M. Aleixo, G. T. Ramirez, A. J. and Caram, R. “Influence of cooling rate on microstructure of Ti-Nb alloy for orthopedic implants,” Materials Science and Engineering C, vol. 27, no. 4, pp. 908–913, May 2007, doi: 10.1016/j.msec.2006.11.001. [CrossRef] [Google Scholar]
- Moshokoa N. et al., “Effects of Fe Addition on the Phase and Mechanical Properties of Ti-15Mo Alloy,” in Springer Proceedings in Materials, vol. 44, Springer, 2024, pp. 34–44. doi: 10.1007/978-981-97-1594-7_5. [CrossRef] [Google Scholar]
- Moshokoa N. et al., “Influence of intermetallic phase (TiFe) on the microstructural evolution and mechanical properties of as-cast and quenched Ti–Mo–Fe alloys,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-60894-x. [CrossRef] [Google Scholar]
- Alves Rezende M. C. R. et al., “Study of the Vickers hardness and corrosion behavior of experimental Ti-Mo alloy in dental office bleaching agents,” archives of health investigation, vol. 6, no. 10, Oct. 2017, doi: 10.21270/archi.v6i10.2249. [Google Scholar]
- Stalheim, D. G. “recrystallization behaviors in the production of structural steels*”.2005. [Google Scholar]
- Jamhari F. I. et al., “Influence of heat treatment parameters on microstructure and mechanical performance of titanium alloy in LPBF: A brief review,” May 01, 2023, Elsevier Editora Ltda. doi: 10.1016/j.jmrt.2023.04.090. [Google Scholar]
- Furukawa’t, M. Horita’, Z. Nemoto’, M. Valiev2 R. Z., and Langdon, T. G. “No. I I,” 1996. [Google Scholar]
- E. O Hall, “The Deformation and Ageing of Mild Steel: I1 Characteristics of the Luders Deformation.” [Google Scholar]
- Bhattacharjee, A. Varma, V. K. Kamat, S. V Gogia, A. K. and Bhargava, S. “Influence of b Grain Size on Tensile Behavior and Ductile Fracture Toughness of Titanium Alloy Ti-10V-2Fe-3Al.” [Google Scholar]
- Guo L. et al., “On the design evolution of hip implants: A review,” Apr. 01, 2022, Elsevier Ltd. doi: 10.1016/j.matdes.2022.110552. [Google Scholar]
- George FLOREA A., Domenic STĂNCEL, C. Buțu, M. Buzatu M., Niculescu F., and Geantă, V. “manufacturing new fe-alloyed ti-mo alloys for biomedical applications,” Bull., Series B, vol. 85, no. 2, p. 2023. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.