Open Access
Issue
MATEC Web Conf.
Volume 403, 2024
SUBLime Conference 2024 – Towards the Next Generation of Sustainable Masonry Systems: Mortars, Renders, Plasters and Other Challenges
Article Number 03008
Number of page(s) 15
Section New Mortar Solutions
DOI https://doi.org/10.1051/matecconf/202440303008
Published online 16 September 2024
  1. F. Facchini, B. Silvestri, S. Digiesi, A. Lucchese, Agri-food loss and waste management: Win-win strategies for edible discarded fruits and vegetables sustainable reuse, Innovative Food Science & Emerging Technologies, Volume 83, 2023, 103235, ISSN 1466-8564 https://doi.org/10.1016/j.ifset.2022.103235 [CrossRef] [Google Scholar]
  2. FAO, The state of food and agriculture. Moving forward on food loss and waste reduction (2019) [Google Scholar]
  3. UNEP, Food waste index report 2021, In Unep, (2021) [Google Scholar]
  4. S.Y. Pan, M.A. Du, I. Te Huang, I.H. Liu, E.E. Chang, P.C. Chiang, Strategies on implementation of waste-to-energy (WTE) supply chain for circular economy system: A review, Journal of cleaner production, Vol. 108, Elsevier Ltd. (2015), pp. 409-421, 10.1016/j.jclepro.2015.06.124 [CrossRef] [Google Scholar]
  5. L. Mechkirrou, M. Arabi, M. Ouhssine, M.E.A. Afilal, Food waste reuse as a feed for organic chicken: A case study, E3S Web of Conferences, 234 (2021) pp. 1-6, 10.1051/e3sconf/202123400090 [CrossRef] [EDP Sciences] [Google Scholar]
  6. L. Pinotti, M. Manoni, F. Fumagalli, N. Rovere, A. Luciano, M. Ottoboni, L. Ferrari, F. Cheli, O. Djuragic, Reduce, reuse, recycle for food waste: A second life for fresh-cut leafy salad crops in animal diets, Animals, 10 (6) (2020), pp. 1-14, 10.3390/ani10061082 [Google Scholar]
  7. F.O. Kassim, C.L.P. Thomas, O.O.D. Afolabi, Integrated conversion technologies for sustainable Agri-food waste valorization: A critical review, Biomass and Bioenergy, 156 (February 2021) (2022), 106314, 10.1016/j.biombioe.2021.106314 [CrossRef] [Google Scholar]
  8. J. Paini, V. Benedetti, S.S. Ail, M.J. Castaldi, M. Baratieri, F. Patuzzi, Valorization of wastes from the food production industry: A review towards an integrated Agri-food processing biorefinery, Waste and Biomass Valorization, 13 (1) (2022), pp. 31-50, 10.1007/s12649-021-01467-1 [CrossRef] [Google Scholar]
  9. C.M. Galanakis, Sustainable applications for the valorization of cereal, Foods (2022), pp. 1-15) and allows an increase in the sustainability of the involved processes (M. Habagil, A. Keucken, I.S. Horváth, Biogas production from food residues—The role of trace metals and co-digestion with primary sludge, Environments - MDPI, 7 (6) (2020), 10.3390/environments7060042 [Google Scholar]
  10. E. Cintura, L. Nunes, B. Esteves and P. Faria, “Agro-industrial wastes as building insulation materials: A review and challenges for Euro-Mediterranean countries,” Industrial Crops and Products, vol. 171, no. 113833, (2021) [CrossRef] [Google Scholar]
  11. J. Bolden, T. Abu-Lebdeh and E. Fini, “Utilization Of Recycled And Waste Materials In Various Construction Applications,” American Journal of Environmental Science, vol. 9, no. 1, pp. 14-24, (2013). [CrossRef] [Google Scholar]
  12. A. A. Sundarraj and T. V. Ranganathan, “A review on cellulose and its utilization from agro-industrial waste,” Drug Invention Today, vol. 10, no. 1, pp. 89-94, (2018). [Google Scholar]
  13. P. Shafigh, U. Johnson Alengaram, H. B. Mahmud and M. Z. Jumaat, “Engineering properties of oil palm shell lightweight concrete containing fly ash,” Materials & Design, vol. 49, pp. 613-621, (2013) [CrossRef] [Google Scholar]
  14. E. A. Olanipekun, K. O. Olusola and O. Ata, “A comparative study of concrete properties using coconut shell and palm kernel shell as coarse aggregates,” Building and Environment, vol. 41, no. 3, p. 297–301, (2006) [CrossRef] [Google Scholar]
  15. J. E. G. Van Dam, M. J. A. Van den Oever and E. R. P. Keijsers, “Production process for high density high performance binderless boards from whole coconut husk,” Industrial Crops and Products, vol. 20, no. 1, p. 97–101, (2004) [CrossRef] [Google Scholar]
  16. J. Fiorelli, D. D. Curtolo, N. G. Barrero, H. S. Junior, E. M. D. J. A. Pallone and R. Johnson, “Particulate composite based on coconut fiber and castor oil polyurethane,” Industrial Crops and Products, vol. 40, pp. 69-75, 2012 [CrossRef] [Google Scholar]
  17. K. Ghavami, “Bamboo as reinforcement in structural concrete elements,” Cement & Concrete Composites, vol. 27, no. 6, p. 637–649, (2005) [CrossRef] [Google Scholar]
  18. F. Wu, C. Liu, L. Zhang and Y. Ma, “Mechanical and creep properties of concrete containing Apricot shell lightweight aggregate,” KSCE Journal of Civil Engineering , vol. 23, no. 7, p. 2948–2957, (2019) [CrossRef] [Google Scholar]
  19. D. H. Nguyen, M. Boutouil, N. Sebaibi, F. Baraud and L. Leleyter, “Durability of pervious concrete using crushed seashells,” Construction and Building Materials, vol. 135, pp. 137-150, (2017) [CrossRef] [Google Scholar]
  20. K. Wei, C. Lv, M. Chen, X. Zhou, Z. Dai and D. Shen, “Development and performance evaluation of a new thermal insulation material from rice straw using high frequency hot-pressing,” Energy and Buildings, vol. 87, pp. 116-122, (2015) [CrossRef] [Google Scholar]
  21. M. Chabannes, E. Garcia-Diaz, L. Clerc and J.-C. Bénézet, “Studying the hardening and mechanical performances of rice husk and hemp-based building materials cured under natural and accelerated carbonation,” Construction and Building Materials, vol. 94, no. 4, pp. 105-115, (2015) [CrossRef] [Google Scholar]
  22. R. Widyorini, J. Xu, K. Umemura and S. Kawai, “Manufacture and properties of binderless particleboard from bagasse I: Effects of raw material type, storage methods, and manufacturing process,” Journal of Wood Science, vol. 51, pp. 648-654, (2005). [CrossRef] [Google Scholar]
  23. J. Pinto, A. B. Sá, S. Pereira, I. Bentes and A. Paiva, “Possible Applications of Corncob as a Raw Insulation,” in Insulation Materials in Context of Sustainability, Rijeka, Croatia, IntechOpen, pp. 25-43 (2016) [Google Scholar]
  24. A. B. Akinyemi, J. Afolayan and E. Oluwatobi, “Some properties of composite corn cob and sawdust particle boards,” Construction and Building Materials, vol. 127, pp. 436-441, 2016 [CrossRef] [Google Scholar]
  25. S. Tangjuank, “Thermal insulation and physical properties of particleboards from pineapple leaves,” International Journal of Physical Sciences, vol. 6, no. 19, pp. 4528-4532, (2011) [Google Scholar]
  26. M. Idicula, A. Boudenne, L. Umadevi, L. Ibos, Y. Candau and S. Thomas, “Thermophysical properties of natural fibre reinforced,” Composites Science and Technology, vol. 66, p. 2719–2725, (2006) [CrossRef] [Google Scholar]
  27. P. Ricciardi, F. Torchia, E. Belloni, E. Lascaro and C. Buratti, “Environmental characterisation of coffee chaff, a new recycled material for building applications,” Construction and Building Materials, vol. 147, pp. 185-193, (2017) [CrossRef] [Google Scholar]
  28. A. Lachheb, A. Allouhi, M. El Marhoune, R. Saadani, T. Kousksou, A. Jamil, M. Rahmoune and O. Oussouaddi, “Thermal insulation improvement in construction materials by adding spent coffee grounds: An experimental and simulation study,” Journal of Cleaner Production, vol. 209, pp. 1411-1419, (2019) [CrossRef] [Google Scholar]
  29. N. Mati-Baouche, H. De Baynast, A. Lebert, S. Sun, C. J. S. Lopez-Mingo, P. Leclaire and P. Michaud, “Mechanical, thermal and acoustical characterizations of an insulating bio-based,” Industrial Crops and Products, vol. 58, p. 244–250, (2014). [CrossRef] [Google Scholar]
  30. P. Evon, J. Vinet, L. Labonne and L. Rigal, “Influence of thermo-pressing conditions on the mechanical properties of biodegradable fiberboards made from a deoiled sunflower cake,” Industrial Crops and Products, vol. 65, pp. 117-126, (2015) [CrossRef] [Google Scholar]
  31. J. Khedari, S. Charoenvai and J. Hirunlabh, “New insulating particleboards from durian peel and coconut coir,” Building and Environment, vol. 38, p. 435–441, (2003) [CrossRef] [Google Scholar]
  32. N. Quaranta, G. Pelozo, A. Cristóbal, M. Kawamura and A. Césari, “Use of wastes from the peanut industry in the manufacture of building materials,” International Journal of Sustainable Development and Planning, vol. 13, pp. 662-670, (2018) [CrossRef] [Google Scholar]
  33. M. Lamrani, N. Laaroussi, A. Khabbazi, M. Khalfaoui, M. Garoum and A. Feiz, “Experimental study of thermal properties of a new ecological building material based on peanut shells and plaster,” Case Studies in Construction Materials, vol. 7, pp. 294-304, (2017) [CrossRef] [Google Scholar]
  34. C. Da Silva, B. Stefanowski, D. Maskell, G. Ormondroyd, M. Ansell, A. Dengel and R. Ball, “Improvement of indoor air quality by MDF panels containing walnut shells,” Building and Environment, vol. 123, pp. 427-436, (2017) [CrossRef] [Google Scholar]
  35. P. Chabriac, E. Gourdon, P. Glé, A. Fabbri and H. Lenormand, “Agricultural by-products for building insulation: Acoustical characterization and modeling to predict micro-structural parameters,” Construction and Building Materials, vol. 112, pp. 158-167, (2016) [CrossRef] [Google Scholar]
  36. W. Fan, Y. Qingliang and H. Brouwers, “Long-term performance of bio-based miscanthus mortar,” Construction and Building Materials, vol. 324, no. 126703, (2022). [Google Scholar]
  37. D.H. Nguyen, M. Boutouil, N. Sebaibi, F. Baraud, L. Leleyter, Durability of pervious concrete using crushed seashells, Constr. Build. Mater. 135 137–150, (2017) https://doi.org/10.1016/j.conbuildmat.2016.12.219 [CrossRef] [Google Scholar]
  38. P. Chavan, A. K. Singh, G. Kaur, Recent progress in the utilization of industrial waste and byproducts of citrus fruits: A revie, Journal of Food Process Engineering (2018) DOI: 10.1111/jfpe.12895 [Google Scholar]
  39. Vitale, M. D. M. Barbero-Barrera, and S. M. Cascone, “Thermal, physical and mechanical performance of orange peel boards: A new recycled material for building application,” Sustain., vol. 13, no. 14, (2021) [Google Scholar]
  40. L. Pani, L. Francesconi, J. Rombi, S. Naitza and G. Balletto, “Recycled Aggregates Mechanical properties and environmental sustainability,” in INPUT Academy, Cagliari, (2019). [Google Scholar]
  41. L. Pani, L. Francesconi and G. Concu, “Relation between Static and Dynamic Moduli of Elasticity for Recycled Aggregate Concrete,” in International Conference on Concrete Sustainability, Tokyo, (2013) [Google Scholar]
  42. L. Pani, L. Francesconi and G. Concu, “Influence of replacement percentage of recycled aggregates on recycled aggregate concrete properties,” FIB symposium Concrete engineering for excellence and efficiency, pp. 1245-1248, (2011) [Google Scholar]
  43. A. Mamì, “Gypsum and giant canes in the Sicilian traditional architecture,” in Vernacular Architecture: Towards a Sustainable Future, London, Taylor & Francis Group, pp. 455-460, (2014) [Google Scholar]
  44. N. Vavřínová, K. Stejskalová, J. Teslík, K. Kubenková and J. Majer, “Research of Mechanical and Thermal Properties of Composite Material Based on Gypsum and Straw,” Journal of Renewable Materials, vol. 10, no. 7, p. 1859–1873, (2022) [CrossRef] [Google Scholar]
  45. P. Shafigh, U. Johnson Alengaram, H. B. Mahmud and M. Z. Jumaat, “Engineering properties of oil palm shell lightweight concrete containing fly ash,” Materials & Design, vol. 49, pp. 613-621, (2013). [CrossRef] [Google Scholar]
  46. Fernandez, F. Insinga, M.G.; Basile, R.; Zagarella, F.; Montagno, R.; Germanà, M.L. Comparative Evaluation of Gypsum-Based Plasters with Pistachio Shells for Eco-Sustainable Building. Sustainability 16(9), 3695; (2024) https://doi.org/10.3390/su16093695 [CrossRef] [Google Scholar]
  47. R. Jia, Q. Wang and P. Feng, “A comprehensive overview of fibre-reinforced gypsum-based composites (FRGCs) in the construction field,” Composites Part B, vol. 205, p. 108540, (2021). [CrossRef] [Google Scholar]
  48. Ente Italiano di Normazione UNI. UNI EN 13279-1:2008. Leganti e intonaci a base di gesso - Parte 1: Definizioni e requisiti, Milano, (2008). [Google Scholar]
  49. FAOSTAT Citrus Fruit Fresh and Processed 2020, //efaidnbmnnnibpcajpcglclefindmkaj/https://www.fao.org/3/cb6492en/cb6492en.pdf [Google Scholar]
  50. Vitale M. et al, Thermal, Physical and Mechanical Performance of Orange Peel Boards: A New Recycled Material for Building Application, 13(14), 7945, (2021). https://doi.org/10.3390/su13147945 ] [Google Scholar]
  51. Satari, B.; Karimi, K. Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization. Resour. Conserv. Recycl., 129, 153–167, (2018). [CrossRef] [Google Scholar]
  52. Zema, D.; Calabrò, P.; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S. Valorisation of citrus processing waste: A review. Waste Manag., 80, 252–273, (2018). [CrossRef] [Google Scholar]
  53. Llano, D.R.; López, D.M. Ensiling potential of orange fruit wastes (Citrus sinensis) Potencial del ensilaje de desechos de naranja (Citrus sinensis). Rev. Ciencias Tec. Agropecu., 17, 41–44 (2008). [Google Scholar]
  54. Bampidis, V.; Robinson, P. Citrus by-products as ruminant feeds: A review. Anim. Feed. Sci. Technol., 128, 175–217 (2006). [CrossRef] [Google Scholar]
  55. FAO Statistics. Available online: https://www.fao.org/faostat/ (accessed on 10 January 2024) [Google Scholar]
  56. Istat Statistics. Available online: http://dati.istat.it/ (accessed on 11 January 2024) [Google Scholar]
  57. Taghizadeh, A.; Rad-Moghadam, K. Green fabrication of Cu/pistachio shell nanocomposite using Pistacia Vera L. hull: An efficient catalyst for expedient reduction of 4-nitrophenol and organic dyes. J. Clean. Prod. , 198, 1105–1119. (2018). https://doi.org/10.1016/j.jclepro.2018.07.042 [CrossRef] [Google Scholar]
  58. Kazankaya, A.; Balta, F.; Ozturk, N.; Sonmez, F. Mineral composition of pistachio (pistaciavera) from Siirt. Asian J. Chem., 20, 2337–2343 (2008). [Google Scholar]
  59. Avenell, S.; Sainz-Diaz, C.I.; Griffiths, A.J. Solid waste pyrolysis in a pilotscale batch pyrolizer. Fuel, 75, 1167–1174. (1996) https://doi.org/10.1016/0016-2361(96)00072-5 [CrossRef] [Google Scholar]
  60. UNI 998-1- Specifiche per malte per opere murarie – parte 1- malte per intonaci interni ed esterni (2010]. [Google Scholar]
  61. Robles, E.; Izaguirre, N.; Martin, A.; Moschou, D.; Labidi, J. Assessment of Bleached and Unbleached Nanofibers from Pistachio Shells for Nanopaper Making. Molecules 2021, 26, 1371. [CrossRef] [Google Scholar]
  62. Marett, J.; Aning, A.; Foster, E.J. The Isolation of Cellulose Nanocrystals from Pistachio Shells via Acid Hydrolysis. Ind. Crops Prod. 2017, 109, 869–874. [CrossRef] [Google Scholar]
  63. UNI 10859:2000; Beni Culturali—Materiali Lapidei Naturali ed Artificiali—Determinazione Dell’assorbimento D’acqua per Capillarità. Ente Italiano di Normazione UNI: Milano, Italy, 2000. [Google Scholar]
  64. CNR BU n. 137/92; Norme Sugli Aggregati—Determinazione del Coefficiente di Imbibizione. Consiglio Nazionale delle Ricerche CNR: Roma, Italy, 1992. [Google Scholar]
  65. M. Kušnerová, J. Valíček, M. Harničárová, T. Hryniewicz, K. Rokosz, Z. Palková, V. Václavík, M. Řepka and M. Bendová, “A Proposal for Simplifying the Method of Evaluation of Uncertainties in Measurement Results,” Measurement Science Review, vol. 13, no. 1, (2013). [Google Scholar]
  66. Guidelines for Life-Cycle Assessment: A “Code of Practice”, Ed. 1, SETAC Workshop held at Sesimbra, Portugal, 31 March - 3 April 1993, Society of Environmental Toxicology and Chemistry1993 [Google Scholar]
  67. Khalife, E.; Sabouri, M.; Kaveh, M.; Szymanek, M. Recent Advances in the Application of Agricultural Waste in Construction. Appl. Sci., 14, 2355 (2024). https://doi.org/10.3390/app14062355 [CrossRef] [Google Scholar]
  68. Pedreño-Rojas M.A., Fořt J., Černý R., Rubio-de-Hita P. Life cycle assessment of natural and recycled gypsum production in the Spanish context. Journal of Cleaner Production, 253, 120056 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.