Open Access
Issue
MATEC Web Conf.
Volume 403, 2024
SUBLime Conference 2024 – Towards the Next Generation of Sustainable Masonry Systems: Mortars, Renders, Plasters and Other Challenges
Article Number 03007
Number of page(s) 16
Section New Mortar Solutions
DOI https://doi.org/10.1051/matecconf/202440303007
Published online 16 September 2024
  1. C. V Podara, I. A. Kartsonakis, and C. A. Charitidis, Towards Phase Change Materials for Thermal Energy Storage: Classification, Improvements and Applications in the Building Sector, Appl. Sci. 11, 1490 (2021). [CrossRef] [Google Scholar]
  2. R. Naresh, R. Parameshwaran, and V. Vinayaka Ram, Bio-Based Phase-Change Materials (LTD, 2020). [Google Scholar]
  3. B. P. Jelle and S. E. Kalnaes, Phase Change Materials for Application in Energy-Efficient Buildings, in Cost-Effective Energy Efficient Building Retrofitting (Woodhead Publishing, 2017). [Google Scholar]
  4. M. Frigione, M. Lettieri, A. Sarcinella, and J. B. de Aguiar, Sustainable Polymer-Based Phase Change Materials for Energy Efficiency in Buildings and Their Application in Aerial Lime Mortars, Constr. Build. Mater. 231, 117149 (2020). [CrossRef] [Google Scholar]
  5. K. Pielichowska and K. Pielichowski, Phase Change Materials for Thermal Energy Storage, Prog. Mater. Sci. 65, 67 (2014). [CrossRef] [Google Scholar]
  6. T. de Rubeis, I. Nardi, M. Muttillo, and D. Paoletti, The Restoration of Severely Damaged Churches – Implications and Opportunities on Cultural Heritage Conservation, Thermal Comfort and Energy Efficiency, J. Cult. Herit. 43, 186 (2020). [Google Scholar]
  7. M. Jaradat, H. Al Majali, C. Bendea, C. C. Bungau, and T. Bungau, Enhancing Energy Efficiency in Buildings through PCM Integration: A Study across Different Climatic Regions, BUILDINGS 14, (2024). [Google Scholar]
  8. X. N. Chen, B. Xu, X. Xie, and G. Pei, Evaluating and Optimizing the Energy Saving Benefits of Latent Heat in Phase Change Materials with New Indices, Appl. Therm. Eng. 228, 120479 (2023). [CrossRef] [Google Scholar]
  9. M. Frigione, M. Lettieri, and A. Sarcinella, Phase Change Materials for Energy Efficiency in Buildings and Their Use in Mortars, Materials (Basel). 12, 1260 (2019). [CrossRef] [Google Scholar]
  10. M. K. Rathod and J. Banerjee, Thermal Stability of Phase Change Materials Used in Latent Heat Energy Storage Systems: A Review, Renew. Sustain. ENERGY Rev. 18, 246 (2013). [CrossRef] [Google Scholar]
  11. L. Y. Zhang, Q. Z. Zhang, L. W. Jin, X. Cui, and X. H. Yang, Energy, Economic and Environmental (3E) Analysis of Residential Building Walls Enhanced with Phase Change Materials, J. Build. Eng. 84, (2024). [Google Scholar]
  12. H. Akeiber, P. Nejat, M. Z. Abd Majid, M. A. Wahid, F. Jomehzadeh, I. Z. Famileh, J. K. Calautit, B. Hughes, and S. A. Zaki, A Review on Phase Change Material (PCM) for Sustainable Passive Cooling in Building Envelopes, Renew. Sustain. ENERGY Rev. 60, 1470 (2016). [CrossRef] [Google Scholar]
  13. A. Sharma, V. V Tyagi, C. R. Chen, and D. Buddhi, Review on Thermal Energy Storage with Phase Change Materials and Applications, Renew. Sustain. ENERGY Rev. 13, 318 (2009). [CrossRef] [Google Scholar]
  14. T. W. Fu, W. Z. Wang, and G. Y. Fang, Thermal Properties and Applications of Form-Stable Phase Change Materials for Thermal Energy Storage and Thermal Management: A Review, ENERGY STORAGE 6, (2024). [Google Scholar]
  15. M. F. Junaid, Z. ur Rehman, N. Ijaz, R. Farooq, U. Khalid, and Z. Ijaz, Performance Evaluation of Cement-Based Composites Containing Phase Change Materials from Energy Management and Construction Standpoints, Constr. Build. Mater. 416, 135108 (2024). [CrossRef] [Google Scholar]
  16. G. Li, G. Xu, and J. Zhang, Experimental Investigation of Thermal and Mechanical Characteristics of Slag Cement Mortars with PCM for Radiant Floors, Case Stud. Constr. Mater. 20, e02958 (2024). [Google Scholar]
  17. V. Z. Vargas, L. J. Claros-Marfil, G. F. B. Sandoval, B. H. Rojas, A. G. Santos, and F. J. N. González, Experimental Assessment of Energy Storage in Microencapsulated Paraffin PCM Cement Mortars, Case Stud. Constr. Mater. 20, e02959 (2024). [Google Scholar]
  18. P. J. Ong et al., Integration of Phase Change Material and Thermal Insulation Material as a Passive Strategy for Building Cooling in the Tropics, Constr. Build. Mater. 386, (2023). [Google Scholar]
  19. T. T. Yang, Y. Ding, B. Z. Li, and A. K. Athienitis, A Review of Climate Adaptation of Phase Change Material Incorporated in Building Envelopes for Passive Energy Conservation, Build. Environ. 244, (2023). [Google Scholar]
  20. C. H. Liu and X. Yu, Microencapsulation of Biobased Phase Change Material by Interfacial Polycondensation for Thermal Energy Storage Applications, J. BIOBASED Mater. BIOENERGY 7, 331 (2013). [CrossRef] [Google Scholar]
  21. Z. P. Jaroslav Pokorný, Lucie Zemanová, Milena Pavlíková, Šimon Marušiak, Thermal Properties of Lime-Based Plasters with Expanded Glass Granulate Therm, in AIP Conference Proceedings, Vol. 020015 (AIP Publishing, 2019). [Google Scholar]
  22. H. Liu, X. Wang, and D. Wu, Innovative Design of Microencapsulated Phase Change Materials for Thermal Energy Storage and Versatile Applications: A Review, Sustain. Energy Fuels 3, 1091 (2019). [Google Scholar]
  23. M. Li, Z. S. Wu, and J. M. Tan, Heat Storage Properties of the Cement Mortar Incorporated with Composite Phase Change Material, Appl. Energy 103, 393 (2013). [CrossRef] [Google Scholar]
  24. J. G. Speight, Chapter 3 - Hydrocarbons from Petroleum, in edited by J. G. B. T.-H. of I. H. P. Speight (Gulf Professional Publishing, Boston, 2011), pp. 85–126. [Google Scholar]
  25. I. Asadi, M. H. Baghban, M. Hashemi, N. Izadyar, and B. Sajadi, Phase Change Materials Incorporated into Geopolymer Concrete for Enhancing Energy Efficiency and Sustainability of Buildings: A Review, CASE Stud. Constr. Mater. 17, e01162 (2022). [Google Scholar]
  26. European Committee for Standarization, UNE-EN 1015-3 Methods of Test for Mortar for Masonry. Part 3: Determination of Consistence of Fresh Mortar (by Flow Table), EN. [Google Scholar]
  27. A. Rubio-Aguinaga, J. M. Fernandez, I. Navarro-Blasco, and J. I. Alvarez, Study on the Interaction of Polymeric Chemical Additives with Phase Change Materials in Air Lime Renders, Polymers (Basel). 16, 1121 (2024). [CrossRef] [Google Scholar]
  28. European Committee for Standarization, UNE-EN 1015-6 Methods of Test for Mortar for Masonry - Part 6: Determination of Bulk Density of Fresh Mortar. [Google Scholar]
  29. European Committee for Standarization, UNE-EN 1015-7:1999 Methods of Test for Mortar for Masonry. Part 7: Determination of Air Content of Fresh Mortar, EN. [Google Scholar]
  30. European Committee for Standarization, UNE 83-816-93 Test Methods. Fresh Mortars. Determination of Water Retentivity, EN. [Google Scholar]
  31. European Committee for Standarization, UNE-EN 1015-9:2000/A1 Methods of Test for Mortar for Masonry. Part 9: Determination of Workable Life and Correction Time of Fresh Mortar, EN. [Google Scholar]
  32. J. F. Gonzalez-Sanchez, B. Tasci, J. M. Fernandez, I. Navarro-Blasco, and J. I. Alvarez, Combination of Polymeric Superplasticizers, Water Repellents and Pozzolanic Agents to Improve Air Lime-Based Grouts for Historic Masonry Repair, Polymers (Basel). 12, 887 (2020). [Google Scholar]
  33. A. Izaguirre, J. Lanas, and J. I. Álvarez, Behaviour of a Starch as a Viscosity Modifier for Aerial Lime-Based Mortars, Carbohydr. Polym. 80, 222 (2010). [CrossRef] [Google Scholar]
  34. L. Haurie, S. Serrano, M. Bosch, A. I. Fernandez, and L. F. Cabeza, Single Layer Mortars with Microencapsulated PCM: Study of Physical and Thermal Properties, and Fire Behaviour, ENERGY Build. 111, 393 (2016). [CrossRef] [Google Scholar]
  35. M. Theodoridou, L. Kyriakou, and I. Ioannou, PCM-Enhanced Lime Plasters for Vernacular and Contemporary Architecture, Energy Procedia 97, 539 (2016). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.