Open Access
Issue
MATEC Web Conf.
Volume 403, 2024
SUBLime Conference 2024 – Towards the Next Generation of Sustainable Masonry Systems: Mortars, Renders, Plasters and Other Challenges
Article Number 03009
Number of page(s) 15
Section New Mortar Solutions
DOI https://doi.org/10.1051/matecconf/202440303009
Published online 16 September 2024
  1. Isebaert, A.; Van Parys, L.; Cnudde, V. Composition and Compatibility Requirements of Mineral Repair Mortars for Stone – A Review. Constr Build Mater 2014, 59, 39–50, doi:10.1016/J.CONBUILDMAT.2014.02.020. [CrossRef] [Google Scholar]
  2. Santos, A.R.; do Rosário Veiga, M.; Matias, L.; Silva, A.S.; de Brito, J. Durability and Compatibility of Lime-Based Mortars: The Effect of Aggregates. Infrastructures 2018, Vol. 3, Page 34 2018, 3, 34, doi:10.3390/INFRASTRUCTURES3030034. [Google Scholar]
  3. Kayan, B.A.; Jitilon, D.S.K.; Azaman, M.N.M. Low Carbon of Lime Plaster Repair: Life Cycle Assessment Approach in Achieving Sustainable Maintenance Management for Heritage Buildings. Journal of Cultural Heritage Management and Sustainable Development 2021, 11, 596–613, doi:10.1108/JCHMSD-05-2020-0068/FULL/PDF. [CrossRef] [Google Scholar]
  4. Zabalza Bribián, I.; Valero Capilla, A.; Aranda Usón, A. Life Cycle Assessment of Building Materials: Comparative Analysis of Energy and Environmental Impacts and Evaluation of the Eco-Efficiency Improvement Potential. Build Environ 2011, 46, 1133–1140, doi:10.1016/J.BUILDENV.2010.12.002. [CrossRef] [Google Scholar]
  5. United Nations Environment Programme 2022 Global Status Report for Buildings and Construction: Towards a Zero‐emission, Efficient and Resilient Buildings and Construction Sector; Nairobi, 2022; [Google Scholar]
  6. Kylili, A.; Fokaides, P.A.; Jimenez, P.A.L. Key Performance Indicators (KPIs) Approach in Buildings Renovation for the Sustainability of the Built Environment: A Review. Renewable and Sustainable Energy Reviews 2016, 56, 906–915. [CrossRef] [Google Scholar]
  7. Yung, E.H.K.; Chan, E.H.W. Implementation Challenges to the Adaptive Reuse of Heritage Buildings: Towards the Goals of Sustainable, Low Carbon Cities. Habitat Internationa 2012, 36, 352–361. [CrossRef] [Google Scholar]
  8. Redden, R.; Crawford, R.H. Valuing the Environmental Performance of Historic Buildings. Australasian Journal of Environmental Management 2020, 1–13. [Google Scholar]
  9. Munarim, U.; Ghisi, E. Environmental Feasibility of Heritage Buildings Rehabilitation. Renewable and Sustainable Energy Reviews 2016, 58, 235–249. [CrossRef] [Google Scholar]
  10. Henry, A.; Stewart, J.; Heritage, E. Practical Building Conservation: Mortars, Renders and Plasters; 2011; ISBN 0754645592. [Google Scholar]
  11. Dheilly, R.M.; Tudo, J.; Sebaïbi, Y.; Quéneudec, M. Influence of Storage Conditions on the Carbonation of Powdered Ca (OH) 2. Constr Build Mater 2002, 16, 155–161. [CrossRef] [Google Scholar]
  12. López-Arce, P.; Gómez-Villalba, L.S.; Martínez-Ramírez, S.; De Buergo, M.Á.; Fort, R. Influence of Relative Humidity on the Carbonation of Calcium Hydroxide Nanoparticles and the Formation of Calcium Carbonate Polymorphs. Powder Technol 2011, 205, 263–269. [CrossRef] [Google Scholar]
  13. Van Balen, K.; Van Gemert, D. Modelling Lime Mortar Carbonation. Mater Struct 1994, 27, 393–398, doi:10.1007/BF02473442. [CrossRef] [Google Scholar]
  14. Groot, C. Repair Mortars for Historic Masonry: Effects of the Binder Choice on Durability. Heron 2016, 61, 33–56. [Google Scholar]
  15. O’Brien, P.F.; Bell, E.; Santamaria, S.P.; Boyland, P.; Cooper, T.P. Role of Mortars in the Decay of Granite. Science of the total environment 1995, 167, 103–110. [CrossRef] [Google Scholar]
  16. Maravelaki, P.-N.; Kapetanaki, K.; Papayianni, I.; Ioannou, I.; Faria, P.; Alvarez, J.; Stefanidou, M.; Nunes, C.; Theodoridou, M.; Ferrara, L. RILEM TC 277-LHS Report: Additives and Admixtures for Modern Lime-Based Mortars. Mater Struct 2023, 56, 106. [CrossRef] [Google Scholar]
  17. Margalha, M.G.; Silva, A.S.; do Rosário Veiga, M.; De Brito, J.; Ball, R.J.; Allen, G.C. Microstructural Changes of Lime Putty during Aging. Journal of Materials in Civil Engineering 2013, 25, 1524–1532. [CrossRef] [Google Scholar]
  18. Rodriguez‐Navarro, C.; Hansen, E.; Ginell, W.S. Calcium Hydroxide Crystal Evolution upon Aging of Lime Putty. Journal of the American Ceramic Society 1998, 81, 3032–3034. [CrossRef] [Google Scholar]
  19. Cazalla, O.; Rodriguez‐Navarro, C.; Sebastian, E.; Cultrone, G.; De la Torre, M.J. Aging of Lime Putty: Effects on Traditional Lime Mortar Carbonation. Journal of the American Ceramic Society 2000, 83, 1070–1076. [CrossRef] [Google Scholar]
  20. Rodriguez-Navarro, C.; Ruiz-Agudo, E.; Burgos-Cara, A.; Elert, K.; Hansen, E.F. Crystallization and Colloidal Stabilization of Ca(OH)2 in the Presence of Nopal Juice (Opuntia Ficus Indica): Implications in Architectural Heritage Conservation. Langmuir 2017, 33, 10936–10950, doi:10.1021/ACS.LANGMUIR.7B02423/SUPPL_FILE/LA7B02423_SI_001.PDF. [CrossRef] [Google Scholar]
  21. Kang, S.H.; Kwon, Y.H.; Moon, J. Controlling the Hydration and Carbonation in Lime-Based Materials: Advantage of Slow Carbonation in CO2 Curable Construction Materials. Constr Build Mater 2020, 249, 118749, doi:10.1016/J.CONBUILDMAT.2020.118749. [CrossRef] [Google Scholar]
  22. Pesce, C.; Pesce, G.L.; Molinari, M.; Richardson, A. Effects of Organic Additives on Calcium Hydroxide Crystallisation during Lime Slaking. Cem Concr Res 2021, 139, 106254. [CrossRef] [Google Scholar]
  23. Gebauer, D.; Cölfen, H. Prenucleation Clusters and Non-Classical Nucleation. Nano Today 2011, 6, 564–584, doi:10.1016/J.NANTOD.2011.10.005. [CrossRef] [Google Scholar]
  24. Fu, H.; Gao, X.; Zhang, X.; Ling, L. Recent Advances in Nonclassical Crystallization: Fundamentals, Applications, and Challenges. Cryst Growth Des 2021, 22, 1476–1499. [Google Scholar]
  25. Gebauer, D.; Cölfen, H.; Verch, A.; Antonietti, M. The Multiple Roles of Additives in CaCO3 Crystallization: A Quantitative Case Study. Advanced Materials 2009, 21, 435–439, doi:10.1002/ADMA.200801614. [CrossRef] [Google Scholar]
  26. Verch, A.; Gebauer, D.; Antonietti, M.; Cölfen, H. How to Control the Scaling of CaCO3: A “Fingerprinting Technique” to Classify Additives. Physical Chemistry Chemical Physics 2011, 13, 16811–16820, doi:10.1039/C1CP21328H. [CrossRef] [Google Scholar]
  27. Rodriguez-Navarro, C.; Burgos-Cara, A.; Di Lorenzo, F.; Ruiz-Agudo, E.; Elert, K. Nonclassical Crystallization of Calcium Hydroxide via Amorphous Precursors and the Role of Additives. Cryst Growth Des 2020, 20, 4418–4432, doi:10.1021/ACS.CGD.0C00241/ASSET/IMAGES/LARGE/CG0C00241_0007.JPEG. [CrossRef] [Google Scholar]
  28. RAO, A.; Berg, J.K.; Kellermeier, M.; Gebauer, D. Sweet on Biomineralization: Effects of Carbohydrates on the Early Stages of Calcium Carbonate Crystallization. European Journal of Mineralogy 2014, 26, 537–552, doi:10.1127/0935-1221/2014/0026-2379. [CrossRef] [Google Scholar]
  29. Rosato, L.; Stefanidou, M.; Milazzo, G.; Fernandez, F.; Livreri, P.; Muratore, N.; Terranova, L.M. Study and Evaluation of Nano-Structured Cellulose Fibers as Additive for Restoration of Historical Mortars and Plasters. Mater Today Proc 2017, 4, 6954–6965, doi:10.1016/J.MATPR.2017.07.025. [CrossRef] [Google Scholar]
  30. Xu, Q.; Xu, F.; Sun, C.; Huang, X.; Luo, H. Cellulose Nanocrystals Lime Mortar Based on Biomimetic Mineralization. Constr Build Mater 2023, 366, 130209, doi: https://doi.org/10.1016/j.conbuildmat.2022.130209. [CrossRef] [Google Scholar]
  31. D’Erme, C.; Caseri, W.R.; Santarelli, M.L. Effect of Fibrillated Cellulose on Lime Pastes and Mortars. Materials 2022, Vol. 15, Page 459 2022, 15, 459, doi:10.3390/MA15020459. [Google Scholar]
  32. Lu, Q.; Cai, Z.; Wang, S.; Lin, F.; Lu, B.; Chen, Y.; Huang, B. Controlled Construction of Nanostructured Organic–Inorganic Hybrid Material Induced by Nanocellulose. ACS Sustain Chem Eng 2017, 5, 8456–8463, doi:10.1021/ACSSUSCHEMENG.7B02394. [CrossRef] [Google Scholar]
  33. Mohamadzadeh-Saghavaz, K.; Resalati, H.; Ghasemian, A. Cellulose-Precipitated Calcium Carbonate Composites and Their Effect on Paper Properties. Chemical Papers 2014, 68, 774–781, doi:10.2478/s11696-013-0513-7. [CrossRef] [Google Scholar]
  34. Gebauer, D.; Oliynyk, V.; Salajkova, M.; Sort, J.; Zhou, Q.; Bergström, L.; Salazar-Alvarez, G. A Transparent Hybrid of Nanocrystalline Cellulose and Amorphous Calcium Carbonate Nanoparticles. Nanoscale 2011, 3, 3563–3566, doi:10.1039/C1NR10681C. [CrossRef] [Google Scholar]
  35. Vismara, E.; Bertolini, G.; Bongio, C.; Massironi, N.; Zarattini, M.; Nanni, D.; Cosentino, C.; Torri, G. Nanocellulose from Cotton Waste and Its Glycidyl Methacrylate Grafting and Allylation: Synthesis, Characterization and Adsorption Properties. Nanomaterials 2021, Vol. 11, Page 476 2021, 11, 476, doi:10.3390/NANO11020476. [Google Scholar]
  36. Gebauer, D.; Volkel, A.; Colfen, H. Stable Prenucleation Calcium Carbonate Clusters. Science (1979) 2008, 322, 1819–1822. [Google Scholar]
  37. Myszka, B.; Schüßler, M.; Hurle, K.; Demmert, B.; Detsch, R.; Boccaccini, A.R.; Wolf, S.E. Phase-Specific Bioactivity and Altered Ostwald Ripening Pathways of Calcium Carbonate Polymorphs in Simulated Body Fluid. RSC Adv 2019, 9, 18232–18244. [CrossRef] [Google Scholar]
  38. Gal, A.; Habraken, W.; Gur, D.; Fratzl, P.; Weiner, S.; Addadi, L. Calcite Crystal Growth by a Solid‐state Transformation of Stabilized Amorphous Calcium Carbonate Nanospheres in a Hydrogel. Angewandte Chemie International Edition 2013, 52, 4867–4870. [CrossRef] [Google Scholar]
  39. Cartwright, J.H.E.; Checa, A.G.; Gale, J.D.; Gebauer, D.; Sainz-Díaz, C.I. Calcium Carbonate Polyamorphism and Its Role in Biomineralization: How Many Amorphous Calcium Carbonates Are There? Angewandte Chemie International Edition 2012, 51, 11960–11970, doi:10.1002/ANIE.201203125. [CrossRef] [Google Scholar]
  40. Willinger, M.-G.; Polleux, J.; Antonietti, M.; Cölfen, H.; Pinna, N.; Nassif, N. Structural Evolution of Aragonite Superstructures Obtained in the Presence of the Siderophore Deferoxamine. CrystEngComm 2015, 17, 3927–3935. [CrossRef] [Google Scholar]
  41. Xu, A.W.; Antonietti, M.; Cölfen, H.; Fang, Y.P. Uniform Hexagonal Plates of Vaterite CaCO3 Mesocrystals Formed by Biomimetic Mineralization. Adv Funct Mater 2006, 16, 903–908, doi:10.1002/ADFM.200500716. [CrossRef] [Google Scholar]
  42. Sow, P.Y. IR-Spectroscopic Investigations of the Kinetics of Calcium Carbonate Precipitation, Universität Konstanz: Konstanz, 2016. [Google Scholar]
  43. Neumann, M.; Epple, M. Monohydrocalcite and Its Relationship to Hydrated Amorphous Calcium Carbonate in Biominerals 2007. [Google Scholar]
  44. Mehta, N.; Gaëtan, J.; Giura, P.; Azaïs, T.; Benzerara, K. Detection of Biogenic Amorphous Calcium Carbonate (ACC) Formed by Bacteria Using FTIR Spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2022, 278, 121262. [CrossRef] [Google Scholar]
  45. Andersen, F.A.; Brecevic, L.; Beuter, G.; Dell’Amico, D.B.; Calderazzo, F.; Bjerrum, N.J.; Underhill, A.E. Infrared Spectra of Amorphous and Crystalline Calcium Carbonate. Acta Chem. Scand 1991, 45, 1018–1024. [CrossRef] [Google Scholar]
  46. Politi, Y.; Arad, T.; Klein, E.; Weiner, S.; Addadi, L. Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase. Science (1979) 2004, 306, 1161–1164. [Google Scholar]
  47. Zhang, Z.; Xie, Y.; Xu, X.; Pan, H.; Tang, R. Transformation of Amorphous Calcium Carbonate into Aragonite. J Cryst Growth 2012, 343, 62–67. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.