Open Access
Issue
MATEC Web Conf.
Volume 401, 2024
21st International Conference on Manufacturing Research (ICMR2024)
Article Number 08011
Number of page(s) 6
Section Sensors, Control, Robotics and Automation
DOI https://doi.org/10.1051/matecconf/202440108011
Published online 27 August 2024
  1. Meekers, I., Refalo, P. and Rochman, A., 2018. Analysis of process parameters affecting energy consumption in plastic injection moulding. Procedia CIRP, 69, pp.342-347. [CrossRef] [Google Scholar]
  2. Singh, G., Pradhan, M.K. and Verma, A., 2015. Effect of injection moulding process parameter on tensile strength using Taguchi method. International Journal of Industrial and Manufacturing Engineering, 9(10), pp.1844-1849. [Google Scholar]
  3. Aminabadi, S.S., Tabatabai, P., Steiner, A., Gruber, D.P., Friesenbichler, W., Habersohn, C. and Berger-Weber, G., 2022. Industry 4.0 in-line AI quality control of plastic injection molded parts. Polymers, 14(17), p.3551. [CrossRef] [Google Scholar]
  4. Fei, N.C., Mehat, N.M. and Kamaruddin, S., 2013. Practical applications of Taguchi method for optimization of processing parameters for plastic injection moulding: a retrospective review. International Scholarly Research Notices, 2013(1), p.462174. [Google Scholar]
  5. Mehat, N.M. and Kamaruddin, S., 2011. Investigating the effects of injection molding parameters on the mechanical properties of recycled plastic parts using the Taguchi method. Materials and Manufacturing Processes, 26(2), pp.202-209. [CrossRef] [Google Scholar]
  6. Amran, M., Salmah, S., Zaki, M., Izamshah, R., Hadzley, M., Sivarao, S., Kasim, M.S. and Amri, M., 2014. The effect of pressure on warpage of dumbbell plastic part in injection moulding machine. Advanced Materials Research, 903, pp.61-66. [CrossRef] [Google Scholar]
  7. Silva, B., Sousa, J. and Alenya, G., 2021, December. Machine learning methods for quality prediction in thermoplastics injection molding. In 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET) (pp. 1-6). IEEE. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.