Issue |
MATEC Web Conf.
Volume 78, 2016
2nd International Conference on Green Design and Manufacture 2016 (IConGDM 2016)
|
|
---|---|---|
Article Number | 01084 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/matecconf/20167801084 | |
Published online | 07 October 2016 |
Shrinkage Analysis on Thick Plate Part using Response Surface Methodology (RSM)
1 School of Manufacturing Engineering, Universiti Malaysia Perlis, Kampus Tetap Pauh Putra, 02600 Arau, Perlis, Malaysia
2 Green Design and Manufacture Research Group, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
3 Centre For Diploma Studies, Universiti Malaysia Perlis, Malaysia
4 Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
5 Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Faculty of Engineering Technology (FETech), Universiti Malaysia Perlis (UniMAP), Level 1 Block S2, UniCITI Alam
* Corresponding author: shayfull@unimap.edu.my
The work reported herein is about an analysis on the quality (shrinkage) on a thick plate part using Response Surface Methodology (RSM). Previous researches showed that the most influential factor affecting the shrinkage on moulded parts are mould and melt temperature. Autodesk Moldflow Insight software was used for the analysis, while specifications of Nessei NEX 1000 injection moulding machine and P20 mould material were incorporated in this study on top of Acrylonitrile Butadiene Styrene (ABS) as a moulded thermoplastic material. Mould temperature, melt temperature, packing pressure and packing time were selected as variable parameters. The results show that the shrinkage have improved 42.48% and 14.41% in parallel and normal directions respectively after the optimisation process.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.