Open Access
Issue
MATEC Web Conf.
Volume 401, 2024
21st International Conference on Manufacturing Research (ICMR2024)
Article Number 05003
Number of page(s) 6
Section Life-Cycle Analysis and Sustainable Manufacturing
DOI https://doi.org/10.1051/matecconf/202440105003
Published online 27 August 2024
  1. A. Rashid, F. M. A. Asif, P. Krajnik, and C. M. Nicolescu, ‘Resource conservative manufacturing: An essential change in business and technology paradigm for sustainable manufacturing’, J Clean Prod, vol. 57, pp. 166–177, 2013 [CrossRef] [Google Scholar]
  2. N. T. Ching, M. Ghobakhloo, M. Iranmanesh, P. Maroufkhani, and S. Asadi, ‘Industry 4.0 applications for sustainable manufacturing: A systematic literature review and a roadmap to sustainable development’, J Clean Prod, vol. 334, 2022. [Google Scholar]
  3. M. Gbededo and K. Liyanage, ‘Sustainable manufacturing assessment: Approach and the trend towards life cycle sustainability analysis’, in 15th International Conference on Manufacturing Research, ICMR 2017, 2017, pp. 383–388. doi: 10.3233/978-1-61499-792-4-383. [Google Scholar]
  4. M. Javaid, A. Haleem, R. P. Singh, and R. Suman, ‘Artificial Intelligence Applications for Industry 4.0: A Literature-Based Study’, Journal of Industrial Integration and Management, vol. 7, no. 1, 2022, doi: 10.1142/S2424862221300040. [Google Scholar]
  5. N. Slack, S. Chambers, R. Johnston, and A. Betts, ‘Operations and Process Management’, Operations Management, 2012. [Google Scholar]
  6. B. He and K. J. Bai, ‘Digital twin-based sustainable intelligent manufacturing: a review’, Adv Manuf, vol. 9, no. 1, 2021, doi: 10.1007/s40436-020-00302-5. [Google Scholar]
  7. M. A. Gbededo and K. Liyanage, ‘Descriptive Framework for Simulation-aided Sustainability Decision-making: A Delphi Study’, Sustain Prod Consum, vol. 22, pp. 45–57, 2020, doi: 10.1016/j.spc.2020.02.006. [CrossRef] [Google Scholar]
  8. C. Zhuang, T. Miao, J. Liu, and H. Xiong, ‘The connotation of digital twin, and the construction and application method of shop-floor digital twin’, Robot Comput Integr Manuf, vol. 68, Apr. 2021, doi: 10.1016/j.rcim.2020.102075. [Google Scholar]
  9. F. Tao, B. Xiao, Q. Qi, J. Cheng, and P. Ji, ‘Digital twin modeling’, Journal of Manufacturing Systems, vol. 64. Elsevier B.V., pp. 372–389, Jul. 01, 2022. doi: 10.1016/j.jmsy.2022.06.015. [CrossRef] [Google Scholar]
  10. C. Cimino, E. Negri, and L. Fumagalli, ‘Review of digital twin applications in manufacturing’, Comput Ind, vol. 113, Dec. 2019, doi: 10.1016/j.compind.2019.103130. [CrossRef] [Google Scholar]
  11. M. A. Gbededo, K. Liyanage, and J. A. Garza-reyes, ‘Towards a Life Cycle Sustainability Analysis : A Systematic Review of Approaches to Sustainable Manufacturing’, J Clean Prod, vol. 184, pp. 1002–1015, 2018. [CrossRef] [Google Scholar]
  12. ISO 14040:2006, ‘Environmental management -- Life cycle assessment -- Principles and framework’. Accessed: Mar. 28, 2018. [Online]. Available: https://www.iso.org/standard/37456.html [Google Scholar]
  13. S. Robinson, ‘Conceptual modelling for simulation Part I: definition and requirements’, Journal of the operational research society, vol. 59, pp. 278–290, 2008, doi: 10.1057/palgrave.jors.2602368. [CrossRef] [Google Scholar]
  14. S. Robinson, ‘Conceptual Modeling For Simulation’, Winter Simulation Conference, pp. 342–353, 2013, doi: 10.1109/WSC.2013.6721435. [Google Scholar]
  15. S. Robinson, Simulation : The Practice of Model Development and Use. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 2004. Accessed: Apr. 27, 2018. [Online]. Available: http://197.14.51.10:81/pmb/GENIE_DES_PROCEDES/Simulation The Practice of Model Development and Use.pdf [Google Scholar]
  16. M. Gbededo and K. Liyannage, ‘Identification and Alignment of the Social Aspects of Sustainable Manufacturing with the Theory of Motivation’, pp. 1–23, 2018, doi: 10.3390/su10030852. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.