Open Access
Issue
MATEC Web Conf.
Volume 398, 2024
2nd International Conference on Modern Technologies in Mechanical & Materials Engineering (MTME-2024)
Article Number 01020
Number of page(s) 4
DOI https://doi.org/10.1051/matecconf/202439801020
Published online 25 June 2024
  1. S. Chen, A. Arabkoohsar, T. Zhu, and M. P. Nielsen, “Development of a micro-compressed air energy storage system model based on experiments,” Energy, vol. 197, p. 117152, Apr. 2020, doi: 10.1016/J.ENERGY.2020.117152. [CrossRef] [Google Scholar]
  2. X. Luo et al., “Modelling study, efficiency analysis and optimisation of large-scale Adiabatic Compressed Air Energy Storage systems with low-temperature thermal storage,” Appl Energy, vol. 162, pp. 589–600, Jan. 2016, doi: 10.1016/J.APENERGY.2015.10.091. [CrossRef] [Google Scholar]
  3. S. K. Cho, H. Moon, and C. J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowettingbased actuation for digital microfluidic circuits,” Journal of Microelectromechanical Systems, vol. 12, no. 1, pp. 70–80, Feb. 2003, doi: 10.1109/JMEMS.2002.807467. [CrossRef] [Google Scholar]
  4. Y. Xing et al., “A robust and scalable active-matrix driven digital microfluidic platform based on printed-circuit board technology,” Lab Chip, vol. 21, no. 10, pp. 1886–1896, May 2021, doi: 10.1039/D1LC00101A. [CrossRef] [Google Scholar]
  5. K. Choi, A. H. C. Ng, R. Fobel, and A. R. Wheeler, “Digital Microfluidics,” The Annual Review of Analytical Chemistry is online Annual Rev. Anal. Chem, vol. 5, pp. 413–440, 2012, doi: 10.1146/annurev-anchem-062011-143028. [CrossRef] [Google Scholar]
  6. V. J. Sieben, C. F. A. Floquet, I. R. G. Ogilvie, M. C. Mowlem, and H. Morgan, “Microfluidic colourimetric chemical analysis system: Application to nitrite detection,” Analytical Methods, vol. 2, no. 5, pp. 484–491, May 2010, doi: 10.1039/c002672g. [CrossRef] [Google Scholar]
  7. A. M. Nightingale, S. U. Hassan, G. W. H. Evans, S. M. Coleman, and X. Niu, “Nitrate measurement in droplet flow: Gas-mediated crosstalk and correction,” Lab Chip, vol. 18, no. 13, pp. 1903–1913, Jul. 2018, doi: 10.1039/c8lc00092a. [CrossRef] [Google Scholar]
  8. S. Huang and R. B. Fair, “Quantitative measurements of inorganic analytes on a digital microfluidics platform,” SN Appl Sci, vol. 1, no. 12, Dec. 2019, doi: 10.1007/s42452-019-1693-8. [Google Scholar]
  9. Y. Wang et al., “Highly Sensitive and Automated Surface Enhanced Raman Scattering-based Immunoassay for H5N1 Detection with Digital Microfluidics,” Anal Chem, vol. 90, no. 8, pp. 5224–5231, Apr. 2018, doi: 10.1021/acs.analchem.8b00002. [CrossRef] [Google Scholar]
  10. S. Han et al., “A digital microfluidic diluter-based microalgal motion biosensor for marine pollution monitoring,” Biosens Bioelectron, vol. 143, Oct. 2019, doi: 10.1016/j.bios.2019.111597. [Google Scholar]
  11. J. Li and C. J. Kim, “Current commercialization status of electrowetting-on-dielectric (EWOD) digital microfluidics,” Lab Chip, vol. 20, no. 10, pp. 1705–1712, May 2020, doi: 10.1039/D0LC00144A. [CrossRef] [Google Scholar]
  12. Z. Gu, M. L. Wu, B. Y. Yan, H. F. Wang, and C. Kong, “Integrated Digital Microfluidic Platform for Colorimetric Sensing of Nitrite,” ACS Omega, vol. 5, no. 19, pp. 11196–11201, May 2020, doi: 10.1021/ACSOMEGA.0C01274. [CrossRef] [Google Scholar]
  13. M. Alistar and U. Gaudenz, “OpenDrop: An Integrated Do-It-Yourself Platform for Personal Use of Biochips,” Bioengineering 2017, Vol. 4, Page 45, vol. 4, no. 2, p. 45, May 2017, doi: 10.3390/BIOENGINEERING4020045. [Google Scholar]
  14. H. Ullah et al., “Design and Fabrication of Digital Microfluidics device for Lab-on-a-Chip Applications,” Engineering Proceedings 2023, Vol. 45, Page 7, vol. 45, no. 1, p. 7, Sep. 2023, doi: 10.3390/ENGPROC2023045007. [Google Scholar]
  15. S. F. Shah, A. T. Jafry, G. Hussain, A. H. Kazim, and M. Ali, “A passive and programmable 3D paper-based microfluidic pump for variable flow microfluidic applications,” Biomicrofluidics, vol. 16, no. 6, Dec. 2022, doi: 10.1063/5.0125937/2835569. [Google Scholar]
  16. A. M. Qamar, M. S. Abbasi, A. T. Jafry, M. Arslan, and M. Usama, “Behavior of a sessile droplet over dielectric infused hydrophobic surface under direct current electric field,” Colloids Surf A Physicochem Eng Asp, vol. 683, p. 133050, Feb. 2024, doi: 10.1016/J.COLSURFA.2023.133050. [CrossRef] [Google Scholar]
  17. L. N. Cheng, H. L. Li, Y. B. Ke, S. T. He, and Z. Y. Tong, “Experimental analysis of two menthods for aptamer immobilization on love-wave aptasensors,” Proceedings of the 2013 Symposium on Piezoelectricity, Acoustic Waves and Device Applications, SPAWDA 2013, 2013, doi: 10.1109/SPAWDA.2013.6841110. [Google Scholar]
  18. V. Chaurasiya, R. K. Chaudhary, M. M. Awad, and J. Singh, “A numerical study of a moving boundary problem with variable thermal conductivity and temperature-dependent moving PCM under periodic boundary condition,” The European Physical Journal Plus, vol. 137, no. 6, p. 714, Jun. 2022, doi: 10.1140/EPJP/S13360-022-02927-W. [CrossRef] [Google Scholar]
  19. G. Hussain, A. T. Jafry, S. Malik, S. F. Shah, S. Nishat, and F. R. Awan, “Multifunctional rotational active valve for flow control in paper-based microfluidic devices,” Sens Actuators B Chem, vol. 378, p. 133142, Mar. 2023, doi: 10.1016/J.SNB.2022.133142. [CrossRef] [Google Scholar]
  20. A. T. Jafry et al., “Double-sided electrohydrodynamic jet printing of two-dimensional electrode array in paper-based digital microfluidics,” Sens Actuators B Chem, vol. 282, pp. 831–837, Mar. 2019, doi: 10.1016/J.SNB.2018.11.135. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.