Open Access
Issue
MATEC Web Conf.
Volume 398, 2024
2nd International Conference on Modern Technologies in Mechanical & Materials Engineering (MTME-2024)
Article Number 01016
Number of page(s) 14
DOI https://doi.org/10.1051/matecconf/202439801016
Published online 25 June 2024
  1. Pottinger, M.G., J.D. Walter, and J.D. Eagleburger, A Commented Synopsis of the Report of the Committee for the National Tire Efficiency Study. Tire Science and Technology, 2007. 35(2): p. 70–93. [Google Scholar]
  2. Sassi, S., M. Ebrahemi, and M. Al-Mozien, New design of flat-proof non-pneumatic tire. Int J Mech Syst Eng, 2016. 2: p. 114. [Google Scholar]
  3. Proddaturi, A., Robust parameter design and finite element analysis for a non-pneumatic tire with low vibration. 2009, Clemson University. [Google Scholar]
  4. Bras, B. and A. Cobert, Life-cycle environmental impact of Michelin Tweel® tire for passenger vehicles. SAE international journal of passenger cars-mechanical systems, 2011. 4(2011-01-0093): p. 32–43. [CrossRef] [Google Scholar]
  5. Deng, Y., et al., A comprehensive review on non-pneumatic tyre research. Materials & Design, 2023: p. 111742. [CrossRef] [Google Scholar]
  6. Karohika, I.M.G., et al. Development of airless tires: A review. in AIP Conference Proceedings. 2023. AIP Publishing LLC. [Google Scholar]
  7. Zheng, Z., S. Rakheja, and R. Sedaghati, Modal properties of honeycomb wheels: A parametric analysis using response surface method. European Journal of Mechanics-A/Solids, 2023. 97: p. 104842. [CrossRef] [Google Scholar]
  8. Zhu, L., et al., Test and Simulation Study on the Static Load and Pure Longitudinal Slip Characteristics of Non-Pneumatic Tire. Machines, 2023. 11(1): p. 86. [CrossRef] [Google Scholar]
  9. Jin, X., et al., Investigation on the static and dynamic behaviors of non-pneumatic tires with honeycomb spokes. Composite Structures, 2018. 187: p. 27–35. [CrossRef] [Google Scholar]
  10. Jackowski, J., M. Wieczorek, and M. Żmuda, Energy consumption estimation of non-pneumatic tire and pneumatic tire during rolling. Journal of KONES, 2018. 25(1): p. 159–168. [Google Scholar]
  11. Veeramurthy, M., et al., Optimisation of geometry and material properties of a non-pneumatic tyre for reducing rolling resistance. International Journal of Vehicle Design, 2014. 66(2): p. 193–216. [CrossRef] [Google Scholar]
  12. Ku, L., et al., Numerical analysis of steady-state mechanical characteristics of the flexible spoke non-pneumatic tire under multiple working conditions. Journal of Terramechanics, 2023. 106: p. 35–45. [CrossRef] [Google Scholar]
  13. Roy, R.K., A primer on the Taguchi method. 2010: Society of Manufacturing Engineers. [Google Scholar]
  14. Payne, R., et al., A Guide to ANOVA and Design in GenStat. VSN International, Hempstead, UK, 2008. [Google Scholar]
  15. Ramadhani, M., M.I.P. Hidayat, and M. Gefin. Optimization of airless tire strength in balance bike with airless tire geometry design variations using finite element methods. in AIP Conference Proceedings. 2021. AIP Publishing LLC. [Google Scholar]
  16. Wang, J., et al., Research of TPU materials for 3D printing aiming at non-pneumatic tires by FDM method. Polymers, 2020. 12(11): p. 2492. [CrossRef] [Google Scholar]
  17. Sarma, S.R., et al. Modelling and analysis of intelligent tyre alternatives for better performance. in Journal of Physics: Conference Series. 2022. IOP Publishing. [Google Scholar]
  18. Jafferson, J. and H. Sharma, Design of 3D printable airless tyres using NTopology. Materials Today: Proceedings, 2021. 46: p. 1147–1160. [CrossRef] [Google Scholar]
  19. Ju, J., et al. Design of honeycomb meta-materials for high shear flexure. in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2009. [Google Scholar]
  20. Aboul-Yazid, A., et al., EFFECT OF SPOKES STRUCTURES ON CHARACTERISTICS PERFORMANCE OF NON-PNEUMATIC TIRES. International Journal of Automotive & Mechanical Engineering, 2015. 11. [Google Scholar]
  21. Phromjan, J. and C. Suvanjumrat. The modification of steel belt layer of airless tire for finite element analysis. in IOP Conference Series: Materials Science and Engineering. 2020. IOP Publishing. [Google Scholar]
  22. Tönük, E. and Y.S. Ünlüsoy, Prediction of automobile tire cornering force characteristics by finite element modeling and analysis. Computers & Structures, 2001. 79(13): p. 1219–1232. [CrossRef] [Google Scholar]
  23. Genovese, A., et al., Static and dynamic analysis of non-pneumatic tires based on experimental and numerical methods. Applied Sciences, 2021. 11(23): p. 11232. [CrossRef] [Google Scholar]
  24. Sharma, A.K. and K. Pandey, Matching tyre size to weight, speed and power available for maximising pulling ability of agricultural tractors. Journal of terramechanics, 2001. 38(2): p. 89–97. [CrossRef] [Google Scholar]
  25. Porcel, A., M. Basset, and G. Gissinger, Car stability detection from tyre stresses. IFAC Proceedings Volumes, 2004. 37(22): p. 577–582. [CrossRef] [Google Scholar]
  26. Ali, M., M. Maarij, and A. Hussain, Design and structural analysis of non-pneumatic tyres for different structures of polyurethane spokes. Journal of Engineering and Applied Science, 2022. 69(1): p. 38. [CrossRef] [Google Scholar]
  27. Miyata, T., et al., Nanoscale stress distribution in silica-nanoparticle-filled rubber as observed by transmission electron microscopy: Implications for tire application. ACS Applied Nano Materials, 2021. 4(5): p. 4452–4461. [CrossRef] [Google Scholar]
  28. Gao, X., et al., Modeling and experimental study of tire deformation characteristics under high-speed rolling condition. Polymer Testing, 2021. 99: p. 107052. [CrossRef] [Google Scholar]
  29. Mathew, N.J., D.K. Sahoo, and E.M. Chakravarthy. Design and static analysis of airlesstyre to reduce deformation. in IOP Conference Series: Materials Science and Engineering. 2017. IOP Publishing. [Google Scholar]
  30. Bae, J.-J., et al., Calculation of the structural stiffness of run-flat and regular tires by considering strain energy. International Journal of Automotive Technology, 2019. 20: p. 979–987. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.