Open Access
Issue
MATEC Web Conf.
Volume 398, 2024
2nd International Conference on Modern Technologies in Mechanical & Materials Engineering (MTME-2024)
Article Number 01004
Number of page(s) 14
DOI https://doi.org/10.1051/matecconf/202439801004
Published online 25 June 2024
  1. S. D. Barewar, M. Joshi, P. O. Sharma, P. S. Kalos, Optimization of jet impingement heat transfer: A review on advanced techniques and parameters, Thermal Science and Engineering Progress, 39, 101697 (2023). [Google Scholar]
  2. T. Prevost, S. Battaglioli, R. Jenkins, A.J. Robinson, Enhancing Jet Array Heat Transfer: Review of Geometric Features of Nozzle and Target Plates, International Journal of Thermofluids, 16, 100203, (2022). [CrossRef] [Google Scholar]
  3. M. A. Hussein, M. Maghrabie, A. Qayyum, A. G. Al-Hasnawi, E. Specht, Influence of the nozzle shape on heat transfer uniformity for an inline array of impinging air jets, Applied Thermal Engineering, 120, 160–169, (2017). [CrossRef] [Google Scholar]
  4. D. Singh, B. Premachandran, S. Kohli, Effect of nozzle shape on jet impingement heat transfer from a circular cylinder, International Journal of Thermal Sciences, 96, 45–69, (2015). [CrossRef] [Google Scholar]
  5. P. Gulati, V. Katti, S.V. Prabhu, Influence of the shape of the nozzle on local heat transfer distribution between a smooth flat surface and impinging air jet, International Journal of Thermal Sciences, 48, 602–617, (2009). [CrossRef] [Google Scholar]
  6. R. Vinze, S. Chandel, M.D. Limaye, S.V. Prabhu, Influence of jet temperature and nozzle shape on the heat transfer distribution between a smooth plate and impinging air jets, International Journal of Thermal Sciences, 99, 136–151, (2016). [CrossRef] [Google Scholar]
  7. M.F. Koseoglu, S. Baskaya, The role of jet inlet geometry in impinging jet heat transfer, modelling, and experiments. International Journal of Thermal Sciences, 49, 1417–1426, (2010). [CrossRef] [Google Scholar]
  8. B. Bachute and D. S. Watvisave, Experimental Study of Influence of Different Nozzle Configuration on a Heat Transfer in Jet Impingement, International Journal of Current Engineering and Technology, 5, 78–81, (2016). [Google Scholar]
  9. B. P. E. Dano, J. A. Liburdy, K. Kanokjaruvijit, Flow characteristics and heat transfer performances of a semi-confined impinging array of jets: Effect of nozzle geometry. International Journal of Heat and Mass Transfer, 48, 691–701, (2005). [CrossRef] [Google Scholar]
  10. K. Marzec, and A Kucaba-Pieta, Heat transfer characteristic of an impingement cooling system with different nozzle geometry, Journal of Physics: Conference Series 530, 012038, (2014). [CrossRef] [Google Scholar]
  11. R. M. D. Tommaso, E. Nino, Investigation on an Impinging Square Jet, International Journal of Modern Engineering Research, 07, 05–14, (2016). [Google Scholar]
  12. F. R. Menter Two‐equation eddy‐viscosity turbulence models for engineering applications, AIAA J., (1994). 32(8):1598‐1605. [CrossRef] [Google Scholar]
  13. W. Peng, L. Jizu, B. Minli, W. Yuyan, H. Chengzhi, A numerical investigation of impinging jet cooling with nanofluids, Nanoscale Microscale Thermophys Eng., 18, 329‐353, (2014). [CrossRef] [Google Scholar]
  14. Y. Q. Zu, Y. Y. Yan, J. D. Maltson, CFD prediction for multi‐jet impingement heat transfer, Proceedings of Turbo Expo: Power for Land, Sea and Air. Orlando, FL, (2010). [Google Scholar]
  15. U Allauddin, N. Uddin, S.O. Neumann, Heat Transfer Enhancement by Detached-Ribs on a Surface Subjected to Jet Impingement, Journal of Thermophysics and Heat Transfer, 27, 355–360, (2010). [Google Scholar]
  16. U. Allauddin, R. Mohiuddin, H. M. Usman Khan, N. Uddin, W. A. Khan, Nanoscale heat transfer investigation of an array of impinging jet systems with different working fluids under crossflow with and without pin fins, Heat Transfer, 50, 81–104, (2021). [CrossRef] [Google Scholar]
  17. U. Allauddin, M. U. Sohail, M. Sohaib, M. A. Siddiqui, M. H. U. Khan, K. Khan, P. G. Verdin, Heat transfer enhancement investigation in jet impingement system of a single and array of square jets using numerical tools, Computational Thermal Sciences: An International Journal, 15(4), (2023). [CrossRef] [Google Scholar]
  18. C. Wan, Y. Rao, P. Chen, Numerical Predictions of Jet Impingement Heat Transfer on Square Pin-Fin Roughened Plates, Appl. Therm. Eng., 80, 301–309, (2015). [CrossRef] [Google Scholar]
  19. Y. Xing, S. Spring, B. Weigand, Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets, J. Heat Transf., 132, 092201, (2010). [CrossRef] [Google Scholar]
  20. L. A. El-Gabry, D. A. Kaminski, Experimental Investigation of Local Heat Transfer distribution on smooth and roughened surfaces under an array of angled impinging jets, J. Turbomach., 127, 532–544, (2005). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.