Open Access
Issue
MATEC Web Conf.
Volume 389, 2024
11th International Symposium on Occupational Health and Safety (SESAM 2023)
Article Number 00017
Number of page(s) 8
DOI https://doi.org/10.1051/matecconf/202438900017
Published online 10 January 2024
  1. Yuan Chunmiao, Huang Dezheng, Li Chang, Li Gang, Journal of Hazardous Materials Issue 246247 283–290 (2013) [CrossRef] [Google Scholar]
  2. Vignes A., Krietsch A., Dufaud O., Santandréa A., Perrin L., Bouillard J. of Hazard Mater. 2019 Nov 5; 379: 120767. DOI: 10.1016/j.jhazmat.2019.120767. PMID: 31276924 (2019) [CrossRef] [Google Scholar]
  3. Jack Grubbs, Bryer C. Sousa, Danielle, 12(4), 603 https://doi.org/10.3390/met12040603 Metals 2022, 12(4), 603 (2022) [Google Scholar]
  4. I. Apostu, F. Faur, Research Journal of Agricultural Science, 50, 4 (2018) [Google Scholar]
  5. Edith Beral, Mihai Zapan - Chimie anorganica, (Ed. Tehnica, Bucuresti, 1977) [Google Scholar]
  6. M. Darie, T. Csaszar, S. Burian, L. Moldovan, C. Colda, 22th International Multidisciplinary Scientific GeoConference SGEM 2022, 22, Iss. 1.1, DOI: 10.5593/sgem2022/1.1/s06.077 Small component ignition tests uncertainty estimation (Albena, Bulgaria 2022) [Google Scholar]
  7. G. A. Gaman, C. Lupu, G. D. Pupazan - Proceduri şi regulamente ale formaţiilor de intervenţie şi exploatare în medii toxice/explozive/inflamabile, ISBN 978-973-88753-6-4 (Ed. INSEMEX 2009) [Google Scholar]
  8. G. Li, C.M. Yuan, Y. Fu, Y.P. Zhong, B.Z. Chen, Inerting of magnesium dust cloud with Ar, N2 and CO2, J. Hazard. Mater. 170 (2009) 180–183. [CrossRef] [Google Scholar]
  9. U. Krause, M. Wappler, S. Radzewitz, F. Ferrero, On the minimum ignition temperature of dust clouds, in: Proceedings of Sixth International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosion, vol. I, Dalhousie University, Halifax, NS, Canada, August 27-September 1, 2006, pp. 68–76. [Google Scholar]
  10. IEC 61241-2-1-1994, Methods for Determining the Minimum Ignition Temperatures of Dust. Part 2: Dust Cloud in a Furnace at a Constant Temperature, Central Office of International Electrotechnical Commission, Geneva, Switzerland, 1994, pp. 11–27. [Google Scholar]
  11. G.K. Ezhovskii, E.S. Ozerov, Y.V. Roshchenya, Critical conditions for the ignition of gas suspensions of magnesium and zirconium powders, Fiz. Goren. Vzryva. 15 (1979) 97–102. [Google Scholar]
  12. Chunmiao Y., Dezheng H., Chang L., Gang L. Ignition behavior of magnesium powder layers on a plate heated at constant temperature. J Hazard Mater. 2013 Feb 15; 246–247:283-90. DOI: 10.1016/j.jhazmat.2012.12.038. Epub 2012 Dec 28. PMID: 23314397. [Google Scholar]
  13. G.D. Florea, N.I. Vlasin, E. Ghicioi, A.B. Simon-Marinica, Z. Vass, Virtual simulation of initiating explosive atmospheres due to methane leakes, International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, ISSN: 1314-2704, Issue: 2.1, Page: 411–418, 20, DOI: 10.5593/sgem2020/2.1/s07.05 (Albena Bulgaria 2020) [Google Scholar]
  14. I. Nalboc, C. Lupu, M. Prodan, A. Szollosi-Mota, A. Jurca, 11th International Conference “Environmental Legislation, Safety Engineering and Disaster Management” Book of Abstracts ISBN 978-606-93873-1-3 Experimental determination of explosion characteristics for aluminum powder derived from technological processes (Cluj-Napoca, Romania 2016) [Google Scholar]
  15. L. Kenneth Cashdollar - Journal of Loss Prevention, 13, page: 183–199, (2000) [CrossRef] [Google Scholar]
  16. J.M. Benson - The Journal of Southern African Institute of Mining and Metallurgy, 7A, ISSN 22256253 (2012) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.