Open Access
Issue
MATEC Web Conf.
Volume 388, 2023
2023 RAPDASA-RobMech-PRASA-AMI Conference Advanced Manufacturing Beyond Borders - The 24th Annual International RAPDASA Conference joined by RobMech, PRASA and AMI, hosted by CSIR and CUT
Article Number 04020
Number of page(s) 17
Section Robotics and Mechatronics
DOI https://doi.org/10.1051/matecconf/202338804020
Published online 15 December 2023
  1. R. J. Rajesh and P. Kavitha, “Camera gimbal stabilization using conventional PID controller and evolutionary algorithms,” in 2015 International Conference on Computer, Communication and Control (IC4), (2015). [Google Scholar]
  2. F. Königseder, W. Kemmetmüller, and A. Kugi, “Attitude control strategy for a camera stabilization platform,” Mechatronics 46, 60–69 (2017). [CrossRef] [Google Scholar]
  3. W. Günthner, P. Wagner, and H. Ulbrich, “An inertially stabilised vehicle camera system - Hardware, algorithms, test drives,” in IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics, (2006). [Google Scholar]
  4. B. Zhang and W. Shang, “Kinematic control of a 3-DOF parallel stabilization platform,” in Proceedings of the 33rd Chinese Control Conference, (2014). [Google Scholar]
  5. A. Campos, J. Quintero, R. Saltarén, M. Ferre, and R. Aracil, “An active helideck testbed for floating structures based on a stewart-gough platform,” in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, (2008). [Google Scholar]
  6. X. Liu, T. Zhao, E. Luo, W. Chen, and Q. Pan, “Coupling 3-PSR/PSU 5-axis compensation mechanism for stabilized platform and its analysis,” Proc Inst Mech Eng C J Mech Eng Sci 227, 1619–1629 (2013). [CrossRef] [Google Scholar]
  7. A. L. Madsen and S. G. Kristensen, “Design of Stewart Platform for Wave Compensation,” Masters Thesis (2012). [Google Scholar]
  8. J. Guo, G. Li, B. Li, and S. Wang, “A ship active vibration isolation system based on a novel 5-DOF parallel mechanism,” in 2014 IEEE International Conference on Information and Automation (ICIA), (2014). [Google Scholar]
  9. A. Strydom and S. Els, “Vibration isolation analysis of a stabilized platform mounted on a small off-road vehicle,” in 9th South African Conference on Computational and Applied Mechanics, SACAM 2014, (2014). [Google Scholar]
  10. M. Javadi, N. Afzalpour, P. Jafari Taayemeh, and S. M. Khorsandijou, “Wheelchair Stabilization by the Control of a Spatial 3-RRS Mechanism,” Iranian Journal of Mechanical Engineering 17, 83–99 (2016). [Google Scholar]
  11. L. Zhuchong, L. Kun, and Z. Wei, “Inertially Stabilized Platform for Airborne Remote Sensing Using Magnetic Bearings,” IEEE/ASME Transactions on Mechatronics 21, 288–301 (2016). [CrossRef] [Google Scholar]
  12. D. K. Nikulin, “Active stabilization of an antenna system,” Journal of Machinery Manufacture and Reliability 36, 110–113 (2007). [CrossRef] [Google Scholar]
  13. M. Dunbabin, S. Brosnan, J. Roberts, and P. Corke, “Vibration isolation for autonomous helicopter flight,” in IEEE International Conference on Robotics and Automation, (2004). [Google Scholar]
  14. C. R. Maj, “A novel approach to vibration isolation in small, unmanned aerial vehicles,” in 2009 IEEE International Conference on Technologies for Practical Robot Applications, (2009). [Google Scholar]
  15. M. Luces, J. K. Mills, and B. Benhabib, “A Review of Redundant Parallel Kinematic Mechanisms,” J Intell Robot Syst 86, 175–198 (2017). [CrossRef] [Google Scholar]
  16. D. Zhang, Q. Shi, and J. Li, “A comparison study of three degree-of-freedom micro motion parallel kinematic machines with/without actuation redundancy,” in 2010 International Conference on Manufacturing Automation, (2010). [Google Scholar]
  17. C. Zhang and L. Zhang, “Kinematics analysis and workspace investigation of a novel 2-DOF parallel manipulator applied in vehicle driving simulator,” Robot Comput Integr Manuf 29, 113–120 (2013). [CrossRef] [Google Scholar]
  18. K. Liu, J. M. Fitzgerald, and F. L. Lewis, “Kinematic analysis of a Stewart platform manipulator,” IEEE Transactions on Industrial Electronics 40, 282–293 (1993). [CrossRef] [Google Scholar]
  19. S. Zarkandi, “Kinematics and singularity analysis of a parallel manipulator with three rotational and one translational DOFs,” Mechanics Based Design of Structures and Machines 39, 392–407 (2011). [CrossRef] [Google Scholar]
  20. S. T. Marais, “The development of a haptic feedback system for vision-assisted hexapod robot foot placement,” PhD Thesis (2017). [Google Scholar]
  21. S. A. Ludwig and K. D. Burnham, “Comparison of Euler Estimate using Extended Kalman Filter, Madgwick and Mahony on Quadcopter Flight Data,” in 2018 International Conference on Unmanned Aircraft Systems (ICUAS), (2018). [Google Scholar]
  22. S. A. Ludwig, “Optimization of Control Parameter for Filter Algorithms for Attitude and Heading Reference Systems,” in 2018 IEEE Congress on Evolutionary Computation (CEC), (2018). [Google Scholar]
  23. S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estimation of IMU and MARG orientation using a gradient descent algorithm,” in 2011 IEEE International Conference on Rehabilitation Robotics, (2011). [Google Scholar]
  24. P. J. Kieliba, P. H. Veltink, T. Lisini Baldi, D. Prattichizzo, G. Santaera, A. Bicchi, M. Bianchi, and B. J. F. Van Beijnum, “Comparison of Three Hand Pose Reconstruction Algorithms Using Inertial and Magnetic Measurement Units,” in 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), (2018). [Google Scholar]
  25. G. Baldwin, R. Mahony, J. Trumpf, T. Hamel, and T. Cheviron, “Complementary filter design on the Special Euclidean group SE(3),” in 2007 European Control Conference (ECC), (2007). [Google Scholar]
  26. M. Bryson and S. Sukkarieh, “Vehicle Model Aided Inertial Navigation for a UAV using Low-cost Sensors,” in Australasian Conference on Robotics and Automation, (2004). [Google Scholar]
  27. K. Abdulrahim, T. Moore, C. Hide, and C. Hill, “Understanding the Performance of Zero Velocity Updates in MEMS-based Pedestrian Navigation,” International Journal of Advancements in Technology 5, 53–60 (2014). [Google Scholar]
  28. J. C. Alvarez, A. M. López, R. C. González, and D. Álvarez, “Pedestrian dead reckoning with waist-worn inertial sensors,” in 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, (2012). [Google Scholar]
  29. Y. Wang, A. Chernyshoff, and A. M. Shkel, “Study on estimation errors in ZUPT- Aided pedestrian inertial navigation due to IMU noises,” IEEE Trans Aerosp Electron Syst 56, 2280–2291 (2020). [CrossRef] [Google Scholar]
  30. X. Niu, Q. Wang, Y. Li, Q. Zhang, and P. Jiang, “An IMU evaluation method using a signal grafting scheme,” Sensors 16, 1–21 (2016). [Google Scholar]
  31. N. El-Sheimy and A. Youssef, “Inertial sensors technologies for navigation applications: state of the art and future trends,” Satellite Navigation 1, 1–21 (2020). [CrossRef] [Google Scholar]
  32. P. Lambert, “Parallel Robots with Configurable Platforms,” PhD Thesis (2013). [Google Scholar]
  33. R. P. Borase, D. K. Maghade, S. Y. Sondkar, and S. N. Pawar, “A review of PID control, tuning methods and applications,” Int J Dyn Control 9, 818–827 (2021). [CrossRef] [Google Scholar]
  34. S. Mann, C. Pierce, B. C. Zheng, J. Hernandez, C. Scavuzzo, and C. Mann, “Integral kinesiology feedback for weight and resistance training,” in 2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.