Open Access
Issue
MATEC Web Conf.
Volume 388, 2023
2023 RAPDASA-RobMech-PRASA-AMI Conference Advanced Manufacturing Beyond Borders - The 24th Annual International RAPDASA Conference joined by RobMech, PRASA and AMI, hosted by CSIR and CUT
Article Number 04019
Number of page(s) 13
Section Robotics and Mechatronics
DOI https://doi.org/10.1051/matecconf/202338804019
Published online 15 December 2023
  1. P. Foehn, D. Falanga, N.S. Kuppuswamy, R. Tedrake, and D. Scaramuzza, Fast trajectory optimization for agile quadrotor maneuvers with a cable-suspended payload. Robotics: Science and Systems XIII, (2017). [Google Scholar]
  2. D. Mellinger, N. Michael, and V. Kumar, Trajectory generation and control for precise aggressive maneuvers with quadrotors. The International Journal of Robotics Research, 31(5), 664–674 (2012). [CrossRef] [Google Scholar]
  3. X. Sun, S. Chai, and B. Zhang, Trajectory planning of the unmanned aerial vehicles with adaptive convex optimization method. IFAC-PapersOnLine, 52(12), 67–72 (2019). [CrossRef] [Google Scholar]
  4. R. C. Sundin, P. Roque, and D. V. Dimarogonas, Decentralized model predictive control for equilibrium-based collaborative uav bar transportation. In 2022 International Conference on Robotics and Automation (ICRA), 4915–4921 (2022). [CrossRef] [Google Scholar]
  5. J. Wehbeh, S. Rahman, and I. Sharf, Distributed model predictive control for uavs collaborative payload transport. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 11666–11672 (2020). [Google Scholar]
  6. B. Sun, C. Hu, L. Cao, N. Wang, and Y. Zhou, Trajectory planning of quadrotor uav with suspended payload based on predictive control. 2018 37th Chinese Control Conference (CCC), 10049–10054 (2018). [CrossRef] [Google Scholar]
  7. Y. Chebotar, K. Hausman, M. Zhang, G. Sukhatme, S. Schaal, and S. Levine, Combining model-based and model-free updates for trajectory-centric reinforcement learning. In Proceedings of the 34th International Conference on Machine Learning, Volume 70 of Proceedings of Machine Learning Research, 703–711 (2017). [Google Scholar]
  8. B. Xian, S. Wang, and S. Yang, An online trajectory planning approach for a quadrotor uav with a slung payload. IEEE Transactions on Industrial Electronics, 67(8), 6669–6678 (2020). [CrossRef] [Google Scholar]
  9. I. Palunko, A. Faust, P. Cruz, L. Tapia, and R. Fierro, A reinforcement learning approach towards autonomous suspended load manipulation using aerial robots. In 2013 IEEE International Conference on Robotics and Automation, 4896–4901 (2013). [CrossRef] [Google Scholar]
  10. A. Faust, I. Palunko, P. Cruz, R. Fierro, and L. Tapia, Learning swing-free trajectories for uavs with a suspended load. In 2013 IEEE International Conference on Robotics and Automation, 4902–4909 (2013). [CrossRef] [Google Scholar]
  11. A. Faust, I. Palunko, P. Cruz, R. Fierro, and L. Tapia, Automated aerial suspended cargo delivery through reinforcement learning. Artificial Intelligence, 247, 381–398 (2017). [CrossRef] [Google Scholar]
  12. H. Hua, Y. Fang, X. Zhang, and C. Qian, A new nonlinear control strategy embedded with reinforcement learning for a multirotor transporting a suspended payload. IEEE/ASME Transactions on Mechatronics, 27(2), 1174–1184 (2022). [CrossRef] [Google Scholar]
  13. F. Panetsos, G. C. Karras, and K. J. Kyriakopoulos, A deep reinforcement learning motion control strategy of a multi-rotor uav for payload transportation with minimum swing. In 2022 30th Mediterranean Conference on Control and Automation (MED), 368–374 (2022). [CrossRef] [Google Scholar]
  14. S. Fujimoto, H. van Hoof, and D. Meger, Addressing function approximation error in actor-critic methods. In International conference on machine learning, 1587–1596 (2018). [Google Scholar]
  15. L. He, N. Aouf, and B. Song, Explainable deep reinforcement learning for uav autonomous path planning. Aerospace Science and Technology, 118, 107052 (2021). [CrossRef] [Google Scholar]
  16. S. Zhang, Y. Li, and Q. Dong, Autonomous navigation of uav in multi-obstacle environments based on a deep reinforcement learning approach. Applied Soft Computing, 115, 108194 (2022). [CrossRef] [Google Scholar]
  17. P. Grobler, and H. Jordaan, Autonomous vision based landing strategy for a rotary wing uav. In 2020 International SAUPEC/RobMech/PRASA Conference, 1–6 (2020). [Google Scholar]
  18. J. F. Slabber, and H. W. Jordaan, Vision-based control of an unknown suspended payload with a multirotor. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 4875–4880 (2021). [Google Scholar]
  19. X. Liang, and Y. Hu, Tracking control and differential flatness of quadrotor with cable- suspended load. In 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 88–92 (2019). [CrossRef] [Google Scholar]
  20. A. Montazeri, A. Can, and I. H. Imran, Unmanned aerial systems: autonomy, cognition, and control. In Unmanned Aerial Systems - Theoretical Foundation and Applications, 47–80 (2020). [Google Scholar]
  21. D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, Deterministic policy gradient algorithms. In Proceedings of the 31st International Conference on Machine Learning, volume 32 of Proceedings of Machine Learning Research, 387–395 (2014). [Google Scholar]
  22. B. Evans, H. Engelbrecht, and H. Jordaan, From navigation to racing: Reward signal design for autonomous racing. 2021 20th International Conference on Advanced Robotics (ICAR), 455–460 (2021). [CrossRef] [Google Scholar]
  23. A. Wächter, and L. T. Biegler, On the implementation of an interior-point filter linesearch algorithm for large-scale nonlinear programming. Mathematical Programming, 106, 25–57 (2006). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.