Open Access
Issue
MATEC Web Conf.
Volume 387, 2023
9th International BAPT Conference “Power Transmissions 2023”
Article Number 01002
Number of page(s) 13
Section Design, Analysis, Simulation, and Optimization
DOI https://doi.org/10.1051/matecconf/202338701002
Published online 06 November 2023
  1. Miler, D., & Hoić, M. (2021). Optimisation of cylindrical gear pairs: A review. Mechanism and Machine Theory, 156, 104156. https://doi.org/10.1016/j.mechmachtheory.2020.104156 [CrossRef] [Google Scholar]
  2. Yeh, T., Yang, D. C. H., & Tong, S.-H. (2001). Design of new tooth profiles for high-load capacity gears. Mechanism and Machine Theory, 36(10), 1105–1120. https://doi.org/10.1016/S0094-114X(01)00041-6 [CrossRef] [Google Scholar]
  3. Liang, D., Chen, B., & Gao, Y. (2013). The generation principle and mathematical model of a new involute-helix gear drive. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227(12), 2834–2843. https://doi.org/10.1177/0954406213478869 [CrossRef] [Google Scholar]
  4. Luo, S., Wu, Y., & Wang, J. (2008). The generation principle and mathematical models of a novel cosine gear drive. Mechanism and Machine Theory, 43(12), 1543–1556. https://doi.org/10.1016/j.mechmachtheory.2007.12.007 [CrossRef] [Google Scholar]
  5. Yu, B., & Ting, K. (2013). Free-Form Conjugation Modeling and Gear Tooth Profile Design. Journal of Mechanisms and Robotics, 5(1). https://doi.org/10.1115/1.4007490 [CrossRef] [Google Scholar]
  6. Komori, T., Ariga, Y., & Nagata, S. (1990). A New Gears Profile Having Zero Relative Curvature at Many Contact Points (LogiX Tooth Profile). Journal of Mechanical Design, 112(3), 430–436. https://doi.org/10.1115/1.2912626 [CrossRef] [Google Scholar]
  7. Yang, S.-C. (2009). Mathematical model of a stepped triple circular-arc gear. Mechanism and Machine Theory, 44(5), 1019–1031. https://doi.org/10.1016/j.mechmachtheory.2008.05.013 [CrossRef] [Google Scholar]
  8. Tsai, M.-H., & Tsai, Y.-C. (1998). Design of highcontact-ratio spur gears using quadratic parametric tooth profiles. Mechanism and Machine Theory, 33(5), 551–564. https://doi.org/10.1016/S0094114X(97)00071-2 [CrossRef] [Google Scholar]
  9. Litvin, F. L., Fuentes, A., Gonzalez-Perez, I., Carnevali, L., & Sep, T. M. (2002). New version of Novikov–Wildhaber helical gears: Computerized design, simulation of meshing and stress analysis. Computer Methods in Applied Mechanics and Engineering, 191(49), 5707–5740. https://doi.org/10.1016/S0045-7825(02)00482-6 [CrossRef] [Google Scholar]
  10. Zhang-Hua, F., Ta-Wei, C., & Chieh-Wen, T. (2002). Mathematical model for parametric tooth profile of spur gear using line of action. Mathematical and Computer Modelling, 36(4), 603–614. https://doi.org/10.1016/S0895-7177(02)00185-1 [CrossRef] [Google Scholar]
  11. Wang, J., Liang, H., Luo, S., & Wu, R. Y. (2013). Active design of tooth profiles using parabolic curve as the line of action. Mechanism and Machine Theory, 67, 47–63. https://doi.org/10.1016/j.mechmachtheory.2013.04.002 [CrossRef] [Google Scholar]
  12. Liu, L., Meng, F., & Ni, J. (2019). A novel noninvolute gear designed based on control of relative curvature. Mechanism and Machine Theory, 140, 144–158. https://doi.org/10.1016/j.mechmachtheory.2019.05.022 [CrossRef] [Google Scholar]
  13. Liu, L., Chen, Z., & Kong, R. (2023). Design and evaluation of spur gear pairs with improved bearing capacity and lubrication performance. Journal of Mechanical Science and Technology, 37(3), 1349–1364. https://doi.org/10.1007/s12206-023-0221-3 [CrossRef] [Google Scholar]
  14. Wang, J., Luo, S., & Wu, Y. (2010). A Method for the Preliminary Geometric Design of Gear Tooth Profiles with Small Sliding Coefficients. Journal of Mechanical Design, 132(5). https://doi.org/10.1115/1.4001410 [Google Scholar]
  15. Kalligeros, C., Koronaios, P., Tzouganakis, P., Papalexis, C., Tsolakis, A., & Spitas, V. (2022). Development of a free-form tooth flank optimization method to improve pitting resistance of spur gears. MATEC Web of Conferences, 366, 01003. https://doi.org/10.1051/matecconf/202236601003 [CrossRef] [EDP Sciences] [Google Scholar]
  16. Okorn, I., Nagode, M., & Klemenc, J. (2021). Operating Performance of External Non-Involute Spur and Helical Gears: A Review. Journal of Mechanical Engineering/Strojniški Vestnik, 67(5). [Google Scholar]
  17. Vasilescu, M. D. (2019). Constructiv and technological consideration on the generation of gear made by the DLP 3D-printed methode. Mat. Plast, 56, 440-444. [CrossRef] [Google Scholar]
  18. Glukchov, V. I., Varepo, L. G., Nagornova, I. V., & Doronin, F. A. (2019, August). Strength and geometry parameters accuracy improvement of 3Dprinted polymer gears. In Journal of Physics: Conference Series (Vol. 1260, No. 3, p. 032019). IOP Publishing. [CrossRef] [Google Scholar]
  19. Jain, M., Patil, S., & Ghosh, S. S. (2019, September). A review on failure characteristics of polymeric gears. In AIP conference proceedings (Vol. 2148, No. 1). AIP Publishing. [Google Scholar]
  20. Zhang, Y., Purssell, C., Mao, K., & Leigh, S. (2020). A physical investigation of wear and thermal characteristics of 3D printed nylon spur gears. Tribology International, 141, 105953. [CrossRef] [Google Scholar]
  21. Zhang, Y., Mao, K., Leigh, S., Shah, A., Chao, Z., & Ma, G. (2020). A parametric study of 3D printed polymer gears. The International Journal of Advanced Manufacturing Technology, 107, 4481-4492. [CrossRef] [Google Scholar]
  22. Tunalioglu, M. S., & Agca, B. V. (2022). Wear and Service Life of 3-D Printed Polymeric Gears. Polymers, 14(10), 2064. [CrossRef] [Google Scholar]
  23. Matkovič, S., Pogačnik, A., & Kalin, M. (2021). Wear-coefficient analyses for polymer-gear lifetime predictions: A critical appraisal of methodologies. Wear, 480, 203944. [CrossRef] [Google Scholar]
  24. Buckingham, E. (1988). Analytical Mechanics of Gears. Courier Corporation. [Google Scholar]
  25. Spitas, V., Costopoulos, T., & Spitas, C. (2007). Fast modeling of conjugate gear tooth profiles using discrete presentation by involute segments. Mechanism and Machine Theory, 42(6), 751–762. https://doi.org/10.1016/j.mechmachtheory.2006.05.007 [CrossRef] [Google Scholar]
  26. Spitas, V., Costopoulos, T., & Spitas, C. (2002). A quick and efficient algorithm for the calculation of gear profiles based on flank involutization. 4th GRACM National Congress on Computational Mechanics, Proceedings. [Google Scholar]
  27. Townsend, D. P. Dudley’s gear handbook, 1992. McGraw-Hill Inc., 3 (3.9), 4-18. [Google Scholar]
  28. Spitas, V. A., Costopoulos, T. N., & Spitas, C. A. (2006). Optimum Gear Tooth Geometry for Minimum Fillet Stress Using BEM and Experimental Verification with Photoelasticity. Journal of Mechanical Design, 128(5), 1159–1164. https://doi.org/10.1115/1.2216731 [CrossRef] [Google Scholar]
  29. Spitas, V., & Spitas, C. (2007). Optimizing involute gear design for maximum bending strength and equivalent pitting resistance. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 221(4), 479–488. https://doi.org/10.1243/0954406JMES342 [CrossRef] [Google Scholar]
  30. Flodin, A., & Andersson, S. (1997). Simulation of mild wear in spur gears. Wear, 207(1), 16–23. https://doi.org/10.1016/S0043-1648(96)07467-4 [CrossRef] [Google Scholar]
  31. Shen, Z., Qiao, B., Yang, L., Luo, W., & Chen, X. (2019). Evaluating the influence of tooth surface wear on TVMS of planetary gear set. Mechanism and Machine Theory, 136, 206–223. https://doi.org/10.1016/j.mechmachtheory.2019.03.014 [CrossRef] [Google Scholar]
  32. Savsani, V., Rao, R. V., & Vakharia, D. P. (2010). Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms. Mechanism and Machine Theory, 45(3), 531–541. https://doi.org/10.1016/j.mechmachtheory.2009.10.010 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.