Open Access
MATEC Web Conf.
Volume 382, 2023
6th International Conference on Advances in Materials, Machinery, Electronics (AMME 2023)
Article Number 01019
Number of page(s) 9
Published online 26 June 2023
  1. Ming-Hung Tsaia and Jien-Wei Yehb, High-Entropy Alloys: A Critical Review [J], Materials Research Letters, 2014, 2(3): 107-123. [CrossRef] [Google Scholar]
  2. Easo P. George 1,2*, Dierk Raabe3 and Robert O. Ritchie 4,5, High-entropy alloys [J], Nature Reviews Materials, 2019, 4(8): 515-534. [CrossRef] [Google Scholar]
  3. Abhishek Sarkar a,b,∗, Ben Breitungb,∗ and Horst Hahna,b,c,d, High entropy oxides: The role of entropy, enthalpy and synergy [J], Scripta Materialia, 2020, 187: 43-48. [CrossRef] [Google Scholar]
  4. Olivia F. Dippo1, Neda Mesgarzadeh1, Tyler J. Harrington1, Grant D. Schrader2 and Kenneth S.Vecchio1,2*, Bulk high-entropy nitrides and carbonitrides [J], Scientific Reports, 2020, 10. [Google Scholar]
  5. L. Jiang a, Y.P. Lu b, M. Song a, C. Lu c, ⁎, K. Sun d, Z.Q. Cao b, T.M. Wang b, F. Gao a,d, L.M. Wang a,d,⁎⁎, A promising CoFeNi2V0.5Mo0.2 high entropy alloy with exceptional ductility [J], Scripta Materialia, 2019, 165: 128-133. [CrossRef] [Google Scholar]
  6. Ana Maria Zemanate a, Alberto Moreira Jorge Júnior b,c, Gisele Ferreira de Lima Andreani a, Virginie Roche c, Katia Regina Cardoso a,*, Corrosion behavior of AlCoCrFeNix high entropy alloys [J], Electrochimica Acta, 2023, 441. [Google Scholar]
  7. K. Liua, S.S. Nenea, M. Franka, S. Sinhaa, R.S. Mishraa,b,∗, Extremely high fatigue resistance in an ultrafine grained high entropy alloy [J], Applied Materials Today, 2019, 15: 525-530. [CrossRef] [Google Scholar]
  8. Li Wang a, Liuting Zhang a,d,*, Xiong Lu b, Fuying Wu a,*, Xuan Sun c, Hu Zhao d, Qian Li b,c,*, Surprising cocktail effect in high entropy alloys on catalyzing magnesium hydride for solid-state hydrogen storage [J], Chemical Engineering Journal, 2023, 465. [Google Scholar]
  9. J. Ding a, A. Inoue a, b, c, d, *, Y. Han a, F.L. Kong b, S.L. Zhu a, Z. Wang e, E. Shalaan c, F. Al-Marzoukic, High entropy effect on structure and properties of (Fe,Co,Ni,Cr)-B amorphous alloys [J], Journal of Alloys and Compounds, 2017, 696: 345-352. [CrossRef] [Google Scholar]
  10. Witold Kucza a, *, Juliusz Da˛browa a, **, Grzegorz Cieslak b, Katarzyna Berent c, Tadeusz Kulik b, Marek Danielewski a, Studies of “sluggish diffusion” effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-FeMn-Ni high entropy alloys; determination of tracer diffusivities by combinatorial approach [J], Journal of Alloys and Compounds, 2018, 731: 920-928. [CrossRef] [Google Scholar]
  11. Chao-Chun Yen a, b, Guan-Rong Huang c, Yun-Cheng Tan b, Han-Wen Yeh b, Da-Ji Luo a, d, KangTien Hsieh f, E-Wen Huang b, Jien-Wei Yeh a, e, SuJien Lin a, e, Chun-Chieh Wang d, Chin-Lung Kuo f, Shou-Yi Chang a, e, ** and Yu-Chieh Lo b, e, *, Lattice distortion effect on elastic anisotropy of high entropy alloys [J], Journal of Alloys and Compounds, 2020, 818. [Google Scholar]
  12. J.O. Abe a,b,*, A.P.I. Popoola a, E. Ajenifuja a,b,c and O.M. Popoola b, Hydrogen energy, economy and storage: Review and recommendation [J], International Journal of Hydrogen Energy, 2019, 44(29): 15072-15086. [CrossRef] [Google Scholar]
  13. Xiaopeng Wang, Haoyin Zhong, Shibo Xi,* Wee Siang Vincent Lee,* and Junmin Xue*, Understanding of Oxygen Redox in the Oxygen Evolution Reaction [J], Advanced Materials, 2022, 34(50). [Google Scholar]
  14. Zhaoyu Wang a, Junhua You a,*, Yao Zhao a, Ruyue Yao a, Guangyi Liu a, Jinlin Lu b, Shiyong Zhao c, Research progress on high entropy alloys and high entropy derivatives as OER catalysts [J], Journal of Environmental Chemical Engineering, 2023, 11(1). [Google Scholar]
  15. Jahangeer Ahmed, Tansir Ahamad, and Saad M. AlShehri, Iron–Nickel Nanoparticles as Bifunctional Catalysts in Water Electrolysis [J], ChemElectroChem, 2017, 4(5): 1222-1226. [CrossRef] [Google Scholar]
  16. Hoyoung Kim, Hyanjoo Park, Seonhwa Oh and SooKil Kim, Facile electrochemical preparation of nonprecious Co-Cu alloy catalysts for hydrogen production in proton exchange membrane water electrolysis [J], International Journal of Energy Research, 2020, 44(4): 2833-2844. [CrossRef] [Google Scholar]
  17. Petr Mazur, Jakub Polonsky, Martin Paidar, Karel Bouzek, Non-conductive TiO2 as the anode catalyst support for PEM water electrolysis [J], International Journal of Hydrogen Energy, 2012, 37(17): 12081-12088. [CrossRef] [Google Scholar]
  18. Jordan E. Nutting, James B. Gerken, Alexios G. Stamoulis, David L. Bruns, and Shannon S. Stahl, “How Should I Think about Voltage? What Is Overpotential?”: Establishing an Organic Chemistry Intuition for Electrochemistry [J], The Journal of Organic Chemistry, 2021, 86(22): 15875-15885. [CrossRef] [Google Scholar]
  19. Stephen Fletcher, Tafel slopes from first principles [J], Journal of Solid State Electrochemistry, 2009, 13(4): 537-549. [CrossRef] [Google Scholar]
  20. Feng Zeng a,b, Chalachew Mebrahtu b, Longfei Liao b, Anna Katharina Beine c, Regina Palkovits b,c,*, Stability and deactivation of OER electrocatalysts: A review [J], Journal of Energy Chemistry, 2022, 69: 301-329. [CrossRef] [Google Scholar]
  21. Tobias Reier,* Mehtap Oezaslan, and Peter Strasser, Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials [J], ACS Catalysis, 2012, 2(8): 1765-1772. [CrossRef] [Google Scholar]
  22. Yingnan Qin, Zuochao Wang, Wenhao Yu, Yingjun Sun, Dan Wang, Jianping Lai, Shaojun Guo, and Lei Wang, High Valence M-Incorporated PdCu Nanoparticles (M = Ir, Rh, Ru) for Water Electrolysis in Alkaline Solution [J], Nano Letters, 2021, 21(13): 5774-5781. [CrossRef] [Google Scholar]
  23. Paolo Veronesia, *, Elena Colombinia, Roberto Rosaa, Cristina Leonellia, Marco Garutib, Microwave processing of high entropy alloys: A powder metallurgy approach [J], Chemical Engineering and Processing: Process Intensification, 2017, 122: 397-403. [CrossRef] [Google Scholar]
  24. Wei Li1,2, Yanan Sun1,2, Li Ye1, Weijian Han1, Fenghua Chen1, Jianling Zhang3, Tong Zhao1, Preparation of high entropy nitride ceramic nanofibers from liquid precursor for CO2 photocatalytic reduction [J], Journal of the American Ceramic Society, 2022, 105(6): 3729-3734. [CrossRef] [Google Scholar]
  25. J. Tang, J.L. Xu, Z.G. Ye, X.B. Li, J.M. Luo, Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction [J], Journal of Materials Science & Technology, 2021, 79: 171-177. [CrossRef] [Google Scholar]
  26. Peishu Yang a, Yongzhi Shi a, Tongjun Xia a, Zhenyu Jiang a, Xinyu Ren a, Lisha Liang a, Qingyi Shao b,⁎, Kaigui Zhu a,⁎, Novel self-supporting thin film electrodes of FeCoNiCrMn high entropy alloy for excellent oxygen evolution reaction [J], Journal of Alloys and Compounds, 2023, 938. [Google Scholar]
  27. Jian Huanga,b, Peilin Wanga,b, Peng Li a,b, Huayi Yina,b, Dihua Wanga,b,∗, Regulating electrolytic Fe0.5CoNiCuZnx high entropy alloy electrodes for oxygen evolution reactions in alkaline solution [J], Journal of Materials Science & Technology, 2021, 93: 110-118. [CrossRef] [Google Scholar]
  28. Zheng Sun, Yongjie Zhao *, Chen Sun, Qing Ni, Chengzhi Wang, Haibo Jin, High entropy spinel-structure oxide for electrochemical application [J], Chemical Engineering Journal, 2022, 431(4). [Google Scholar]
  29. Kyung-Hwan Kim, Yun-Hyuk Choi *, Effect of constituent cations on the electrocatalytic oxygen evolution reaction in high-entropy oxide (Mg0.2Fe0.2Co0.2Ni0.2Cu0.2)O [J], Journal of Electroanalytical Chemistry, 2022, 922. [Google Scholar]
  30. Thi Xuyen Nguyen, Yi-Cheng Liao, Chia-Chun Lin, Yen-Hsun Su, and Jyh-Ming Ting*, Advanced High Entropy Perovskite Oxide Electrocatalyst for Oxygen Evolution Reaction [J], Advanced Functional Materials, 2021, 31(27). [Google Scholar]
  31. I. Zaharieva,*a D. Gonza´lez-Flores,a B. Asfari,a C. Pasquini,a M. R. Mohammadi,a K. Klingan,a I. Zizak,b S. Loos,a P. Cherneva and H. Dau*a, Water oxidation catalysis – role of redox and structural dynamics in biological photosynthesis and inorganic manganese oxides [J], Energy & Environmental Science, 2016, 9(7): 2433-2443. [CrossRef] [Google Scholar]
  32. Chen Liu, Han Zhu, * Shuanglong Lu, Fang Duan and Mingliang Du *, High entropy alloy nitrides with integrated nanowire/nanosheet architecture for efficient alkaline hydrogen evolution reactions [J], New Journal of Chemistry, 2021,45(47): 22255-22260. [CrossRef] [Google Scholar]
  33. G.J. Gao a, J.L. Xu a,*, J. Tang a, L.W. Zhang b,**, Y.C. Ma a, J.M. Luo a,***, Plasma nitrided CoCrFeNiMn high entropy alloy coating as a self-supporting electrode for oxygen evolution reaction [J], Journal of Materials Research and Technology, 2023, 23: 5357-5367. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.