Open Access
Issue
MATEC Web Conf.
Volume 377, 2023
Curtin Global Campus Higher Degree by Research Colloquium (CGCHDRC 2022)
Article Number 01017
Number of page(s) 17
Section Engineering and Technologies for Sustainable Development
DOI https://doi.org/10.1051/matecconf/202337701017
Published online 17 April 2023
  1. Wang, Z., et al., Dynamic linkage among industrialisation, urbanisation, and CO2 emissions in APEC realms: Evidence based on DSUR estimation. Structural Change and Economic Dynamics, 2020. 52: p. 382–389. [CrossRef] [Google Scholar]
  2. Crabtree, G.W. and M.S. Dresselhaus, The Hydrogen Fuel Alternative. MRS Bulletin, 2008. 33(4): p. 421–428. [CrossRef] [Google Scholar]
  3. Lim, Z.-W. and K.-L. Goh, Natural gas industry transformation in Peninsular Malaysia: The journey towards a liberalised market. Energy Policy, 2019. 128: p. 197–211. [CrossRef] [Google Scholar]
  4. Zhao, H., 2022 Pioneers in Energy Research: Anders Lyngfelt. Energy & Fuels, 2022. 36(17): p. 9365–9370. [CrossRef] [Google Scholar]
  5. Elmisaoui, S., et al., Shrinking Core Approach in the Modelling and Simulation of Phosphate Ore Acidulation. Chemical Engineering Transactions, 2021. 86: p. 871–876. [Google Scholar]
  6. Monazam, E.R., R.W. Breault, and R. Siriwardane, Kinetics of Magnetite (Fe3O4) Oxidation to Hematite (Fe2O3) in Air for Chemical Looping Combustion. Industrial & Engineering Chemistry Research, 2014: p. 13320–13328. [CrossRef] [Google Scholar]
  7. Long, Y., et al., NiO and CuO coated monolithic oxygen carriers for chemical looping combustion of methane. Journal of the Energy Institute, 2021. 94: p. 199–209. [CrossRef] [Google Scholar]
  8. Kataria, P., J. Nandong, and W.S. Yeo. Reactor design and control aspects for Chemical Looping Hydrogen Production: A review. in 2022 International Conference on Green Energy, Computing and Sustainable Technology (GECOST). 2022. IEEE. [Google Scholar]
  9. Richter, H.J. and K.F. Knoche, Reversibility of Combustion Processes, in Efficiency and Costing. 1983, AMERICAN CHEMICAL SOCIETY. p. 71–85. [Google Scholar]
  10. Lyngfelt, A., et al., 11,000 h of chemical-looping combustion operation—Where are we and where do we want to go? International Journal of Greenhouse Gas Control, 2019. 88: p. 38–56. [CrossRef] [Google Scholar]
  11. Abuelgasim, S., W. Wang, and A. Abdalazeez, A brief review for chemical looping combustion as a promising CO2 capture technology: Fundamentals and progress. Science of The Total Environment, 2021. 764: p. 142892. [CrossRef] [Google Scholar]
  12. Ayodele, B., et al., A Mini-Review on Hydrogen-Rich Syngas Production by Thermo-Catalytic and Bioconversion of Biomass and Its Environmental Implications. Frontiers in Energy Research, 2019. 7. [CrossRef] [Google Scholar]
  13. Lukajtis, R., et al., Hydrogen production from biomass using dark fermentation. Renewable and Sustainable Energy Reviews, 2018. 91: p. 665–694. [CrossRef] [Google Scholar]
  14. Cao, L., et al., Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environmental research, 2020. 186: p. 109547. [CrossRef] [Google Scholar]
  15. Baykara, S.Z., Hydrogen production by direct solar thermal decomposition of water, possibilities for improvement of process efficiency. International Journal of Hydrogen Energy, 2004. 29(14): p. 1451–1458. [CrossRef] [Google Scholar]
  16. Dincer, I., Green methods for hydrogen production. International Journal of Hydrogen Energy, 2012. 37(2): p. 1954–1971. [CrossRef] [Google Scholar]
  17. Winkler, H., et al., Access and Affordability of Electricity in Developing Countries. World Development, 2011. 39(6): p. 1037–1050. [CrossRef] [Google Scholar]
  18. Chiesa, P., et al., Three-reactors chemical looping process for hydrogen production. International Journal of Hydrogen Energy, 2008. 33(9): p. 2233–2245. [CrossRef] [Google Scholar]
  19. Yan, X., et al., Performance of hydrogen and power co-generation system based on chemical looping hydrogen generation of coal. International Journal of Hydrogen Energy, 2022. [Google Scholar]
  20. Feng, Y., N. Wang, and X. Guo, Reaction mechanism of methane conversion over Ca2Fe2O5 oxygen carrier in chemical looping hydrogen production. Fuel, 2021. 290: p. 120094. [CrossRef] [Google Scholar]
  21. Condori, O., et al., Biomass chemical looping gasification for syngas production using ilmenite as oxygen carrier in a 1.5 kWth unit. Chemical Engineering Journal, 2021. 405: p. 126679. [CrossRef] [Google Scholar]
  22. Condori, O., et al., Biomass chemical looping gasification for syngas production using LD Slag as oxygen carrier in a 1.5 kWth unit. Fuel Processing Technology, 2021. 222: p. 106963. [CrossRef] [Google Scholar]
  23. Yan, J., et al., Hydrogen-rich syngas production with tar elimination via biomass chemical looping gasification (BCLG) using BaFe2O4/Al2O3 as oxygen carrier. Chemical Engineering Journal, 2020. 387: p. 124107. [CrossRef] [Google Scholar]
  24. Kang, K.-S., et al., Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production. International Journal of Hydrogen Energy, 2010. 35(22): p. 12246–12254. [CrossRef] [Google Scholar]
  25. Ma, S., et al., Enhanced performance of hematite oxygen carrier by CeO2 for chemical looping hydrogen generation. 2022. 47(8): p. 5130–5141. [Google Scholar]
  26. Kathe, M., et al., Chemical looping gasification for hydrogen enhanced syngas production with in-situ CO2 capture. 2014, The Ohio State Univ., Columbus, OH (United States). [CrossRef] [Google Scholar]
  27. Dou, B., et al., Renewable hydrogen production from chemical looping steam reforming of biodiesel byproduct glycerol by mesoporous oxygen carriers. Chemical Engineering Journal, 2021. 416: p. 127612. [CrossRef] [Google Scholar]
  28. Zhou, Q., L. Zeng, and L.-S. Fan Syngas Chemical Looping Process: Dynamic Modeling of a Moving-Bed Reducer. Research Gate, 2013. [Google Scholar]
  29. Kooiman, R.F., et al., Experimental Demonstration of Two-Stage Packed Bed Chemical-Looping Combustion Using Syngas with CuO/Al2O3 and NiO/CaAl2O4 as Oxygen Carriers. Industrial & Engineering Chemistry Research, 2015. 54(7): p. 2001–2011. [CrossRef] [Google Scholar]
  30. Diglio, G., et al., Sensitivity analysis in the design of a packed-bed reactor for a chemical looping combustion process. 2017. [Google Scholar]
  31. Zerobin, F. and T. Pröll, Potential and limitations of power generation via chemical looping combustion of gaseous fuels. International Journal of Greenhouse Gas Control, 2017. 64: p. 174–182. [CrossRef] [Google Scholar]
  32. Zhou, Z., L. Han, and G.M. Bollas, Overview of chemical-looping reduction in fixed bed and fluidized bed reactors focused on oxygen carrier utilization and reactor efficiency. Aerosol and Air Quality Research, 2014. 14(2): p. 559–571. [CrossRef] [Google Scholar]
  33. Dou, B., et al., Hydrogen production by enhanced-sorption chemical looping steam reforming of glycerol in moving-bed reactors. Applied Energy, 2014. 130: p. 342–349. [CrossRef] [Google Scholar]
  34. Tong, A., et al., Continuous high purity hydrogen generation from a syngas chemical looping 25kWth sub-pilot unit with 100% carbon capture. Fuel, 2013. 103: p. 495–505. [CrossRef] [Google Scholar]
  35. Zhu, J., et al., Modeling and design of a multi-tubular packed-bed reactor for methanol steam reforming over a Cu/ZnO/Al2O3 catalyst. Energies, 2020. 13(3): p. 610. [CrossRef] [Google Scholar]
  36. Oyegoke, T., et al., Design and Fabrication of a Multi-tubular Fixed Bed Reactor for Acetone Production as A Pilot Plant Model for Chemical Engineering Training in Developing Nations. Journal of the Pakistan Institute of Chemical Engineers, 2022. 50(2). [Google Scholar]
  37. Pelaez, R., et al., Direct synthesis of dimethyl ether in multi-tubular fixed-bed reactors: 2D multi-scale modelling and optimum design. Fuel Processing Technology, 2018. 174: p. 149–157. [CrossRef] [Google Scholar]
  38. Rahimi, A. and A. Niksiar, A general model for moving-bed reactors with multiple chemical reactions, Part II: Effect of kinetic model. International Journal of Mineral Processing, 2013. 124: p. 67–74. [CrossRef] [Google Scholar]
  39. Tonks, M.R., P.-C.A. Simon, and J. Hirschhorn, Mechanistic grain growth model for fresh and irradiated UO2 nuclear fuel. Journal of Nuclear Materials, 2021. 543: p. 152576. [CrossRef] [Google Scholar]
  40. Rahimi, A. and A. Niksiar, A general model for moving-bed reactors with multiple chemical reactions part I: Model formulation. International Journal of Mineral Processing, 2013. 124: p. 58–66. [CrossRef] [Google Scholar]
  41. Szekely, J., Gas-solid reactions. 2012: Elsevier. [Google Scholar]
  42. Takenaka, Y., et al., Mathematical model of direct reduction shaft furnace and its application to actual operations of a model plant. Computers & chemical engineering, 1986. 10(1): p. 67–75. [CrossRef] [Google Scholar]
  43. Kuo, P.-C., et al., Hydrogen production from biomass using iron-based chemical looping technology: Validation, optimization, and efficiency. Chemical Engineering Journal, 2018. 337: p. 405–415. [CrossRef] [Google Scholar]
  44. Cleeton, J.P.E., et al., Clean hydrogen production and electricity from coal via chemical looping: Identifying a suitable operating regime. International Journal of Hydrogen Energy, 2009. 34(1): p. 1–12. [CrossRef] [Google Scholar]
  45. Song, Q., et al., Effect of temperature on reduction of CaSO4 oxygen carrier in chemicallooping combustion of simulated coal gas in a fluidized bed reactor. Industrial & Engineering Chemistry Research, 2008. 47(21): p. 8148–8159. [CrossRef] [Google Scholar]
  46. Ryu, H.-J., D.-H. Bae, and G.-T. Jin, Effect of temperature on reduction reactivity of oxygen carrier particles in a fixed bed chemical-looping combustor. Korean Journal of Chemical Engineering, 2003. 20: p. 960–966. [CrossRef] [Google Scholar]
  47. Sandvik, P., et al., Operating Strategy of Chemical Looping Systems with Varied Reducer and Combustor Pressures. Industrial & Engineering Chemistry Research, 2019. 58(13): p. 5228–5235. [CrossRef] [Google Scholar]
  48. Zhang, X. and H. Jin, Thermodynamic analysis of chemical-looping hydrogen generation. Applied Energy, 2013. 112: p. 800–807. [CrossRef] [Google Scholar]
  49. Li, F., et al., Syngas chemical looping gasification process: Bench-scale studies and reactor simulations. AIChE Journal, 2010. 56(8): p. 2186–2199. [CrossRef] [Google Scholar]
  50. Copyright, in Strategies of Banks and Other Financial Institutions, R. Kumar, Editor. 2014, Academic Press: San Diego. p. 4. [Google Scholar]
  51. Dwarapudi, S., et al., Influence of pellet size on quality and microstructure of iron ore pellets. ISIJ international, 2008. 48(6): p. 768–776. [CrossRef] [Google Scholar]
  52. Cocco, R., S.R. Karri, and T. Knowlton, Introduction to fluidization. Chem. Eng. Prog, 2014. 110(11): p. 21–29. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.