Open Access
Issue |
MATEC Web Conf.
Volume 377, 2023
Curtin Global Campus Higher Degree by Research Colloquium (CGCHDRC 2022)
|
|
---|---|---|
Article Number | 01016 | |
Number of page(s) | 12 | |
Section | Engineering and Technologies for Sustainable Development | |
DOI | https://doi.org/10.1051/matecconf/202337701016 | |
Published online | 17 April 2023 |
- Tzanakis, A., Duct optimization using CFD software ANSYS Fluent Adjoint Solver. 2014. [Google Scholar]
- Mohamed, M.H., Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy, 2012. 47(1): p. 522–530 [CrossRef] [Google Scholar]
- Mohamed, M.H., A.M. Ali, and A.A. Hafiz, CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter. Engineering Science and Technology, an International Journal, 2015. 18(1): p. 1–13. [CrossRef] [Google Scholar]
- Siddiqui, M.S., N. Durrani, and A. Imran, Numerical Study to Quantify the Effects of Struts and Central Hub on the Performance of a Three Dimensional Vertical Axis Wind Turbine Using Sliding Mesh. Proceedings of the ASME 2013 Power Conference, 2013. 2. [Google Scholar]
- Durrani, N., H. Mian, H. Rahman, and S. Chaudhry, A Detailed Aerodynamic Design and Analysis of a 2-D Vertical Axis Wind Turbine Using Sliding Mesh in CFD. 2011. [Google Scholar]
- Bianchini, A., F. Balduzzi, P. Bachant, G. Ferrara, and L. Ferrari, Effectiveness of twodimensional CFD simulations for Darrieus VAWTs: a combined numerical and experimental assessment. Energy Conversion and Management, 2017. 136: p. 318–328. [CrossRef] [Google Scholar]
- De Marco, A., D.P. Coiro, D. Cucco, and F. Nicolosi, A Numerical Study on a Vertical-Axis Wind Turbine with Inclined Arms %J International Journal of Aerospace Engineering. 2014. 2014: p. 14. [Google Scholar]
- Hand, B. and A. Cashman, Conceptual design of a large-scale floating offshore vertical axis wind turbine. Energy Procedia, 2017. 142: p. 83–88. [CrossRef] [Google Scholar]
- Ahmadi-Baloutaki, M., R. Carriveau, and D.S.-K. Ting, Straight-bladed vertical axis wind turbine rotor design guide based on aerodynamic performance and loading analysis. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2014. 228(7): p. 742–759. [CrossRef] [Google Scholar]
- Hara, Y., N. Horita, S. Yoshida, H. Akimoto, and T. Sumi, Numerical Analysis of Effects of Arms with Different Cross-Sections on Straight-Bladed Vertical Axis Wind Turbine. Energies, 2019. 12: p. 2106. [CrossRef] [Google Scholar]
- Marinić-Kragić, I., D. Vučina, and Z.J.E. Milas, Concept of flexible vertical-axis wind turbine with numerical simulation and shape optimization. 2019. 167: p. 841–852. [Google Scholar]
- Marinić-Kragić, I., D. Vučina, and Z.J.E. Milas, Global optimization of Savonius-type vertical axis wind turbine with multiple circular-arc blades using validated 3D CFD model. 2022. 241: p. 122841. [Google Scholar]
- Marinić-Kragić, I., D. Vučina, and Z.J.R.E. Milas, Numerical workflow for 3D shape optimization and synthesis of vertical-axis wind turbines for specified operating regimes. 2018. 115: p. 113–127. [Google Scholar]
- Elsakka, M.M., D.B. Ingham, L. Ma, M. Pourkashanian, G.H. Moustafa, and Y.J.E.R. Elhenawy, Response Surface Optimisation of Vertical Axis Wind Turbine at low wind speeds. 2022. 8: p. 10868–10880. [Google Scholar]
- Nadarajah, S. Adjoint-Based Aerodynamic Optimization of Benchmark Problems. in 53rd AIAA Aerospace Sciences Meeting. 2015. [Google Scholar]
- Shi-Dong, D., C.-H. Chen, and S. Nadarajah. Adjoint-based aerodynamic optimization of benchmark CRM wing. in 35th AIAA Applied Aerodynamics Conference. 2017. [Google Scholar]
- Carrier, G., D. Destarac, A. Dumont, M. Méheut, I. Salah El Din, J. Peter, S. Khelil, J. Brezillon, and M. Pestana, Gradient-Based Aerodynamic Optimization with the elsA Software. 2014 [Google Scholar]
- Giles, M.B., N.A.J.F. Pierce, turbulence, and combustion, An introduction to the adjoint approach to design. 2000. 65(3): p. 393–415. [Google Scholar]
- Mohebbi, F., B. Evans, and M. Sellier, On an Exact Step Length in Gradient-Based Aerodynamic Shape Optimization—Part II: Viscous Flows. Fluids 2021, 6, 106. 2021, [CrossRef] [Google Scholar]
- Fleischli, B., A. Del Rio, E. Casartelli, L. Mangani, B. Mullins, C. Devals, and M. Melot. Application of a General Discrete Adjoint Method for Draft Tube Optimization. in IOP Conference Series: Earth and Environmental Science. 2021. IOP Publishing. [Google Scholar]
- Horová, V., M. Bojko, and J. Dobeš. Methodology of using the Adjoint solver optimization tool during flow in the intercooler filling line to minimize pressure drop. in EPJ Web of Conferences. 2019. EDP Sciences. [Google Scholar]
- Lang, M., CFD-Method for 3D Aerodynamic Adjoint Simulations: For External Automotive Aerodynamics. 2019. [Google Scholar]
- Dhert, T., T. Ashuri, and J. Martins, Aerodynamic Shape Optimization of Wind Turbine Blades Using a Reynolds-Averaged Navier--Stokes Model and an Adjoint Method. Wind Energy, 2017. 20: p.909–926. [CrossRef] [Google Scholar]
- Day, H., D. Ingham, L. Ma, and M. Pourkashanian, Adjoint based optimisation for efficient VAWT blade aerodynamics using CFD. Journal of Wind Engineering and Industrial Aerodynamics, 2021. 208: p. 104431. [Google Scholar]
- Michna, J. and K. Rogowski, Numerical Study of the Effect of the Reynolds Number and the Turbulence Intensity on the Performance of the NACA 0018 Airfoil at the Low Reynolds Number Regime. 2022. 10(5): p. 1004. [Google Scholar]
- Timmer, W., Two-Dimensional Low-Reynolds Number Wind Tunnel Results for Airfoil NACA 0018. Wind engineering 32(6), 525–537, 2008. 32. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.