Open Access
Issue |
MATEC Web Conf.
Volume 377, 2023
Curtin Global Campus Higher Degree by Research Colloquium (CGCHDRC 2022)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 8 | |
Section | Engineering and Technologies for Sustainable Development | |
DOI | https://doi.org/10.1051/matecconf/202337701003 | |
Published online | 17 April 2023 |
- Li B., Huang Y., Guo D., Liu Y., Liu Z., Han J.-C., et al. Environmental risks of disposable face masks during the pandemic of COVID-19: Challenges and management. Science of The Total Environment. 2022;825:153880. https://doi.org/10.1016/j.scitotenv.2022.153880. [CrossRef] [Google Scholar]
- Yousef S., Eimontas J., Striügas N., Abdelnaby M.A. Pyrolysis kinetic behaviour and TG-FTIR-GC- MS analysis of Coronavirus Face Masks. Journal of Analytical and Applied Pyrolysis. 2021;156:105118. https://doi.org/10.1016/j.jaap.2021.105118. [CrossRef] [Google Scholar]
- Chalermsinsuwan B., Li Y.-H., Manatura K. Optimization of gasification process parameters for COVID-19 medical masks using response surface methodology. Alexandria Engineering Journal. 2023;62:335–347. https://doi.org/10.1016/j.aej.2022.07.037. [CrossRef] [Google Scholar]
- Mohamed B.A., Fattah I.M.R., Yousaf B., Periyasamy S. Effects of the COVID-19 pandemic on the environment, waste management, and energy sectors: a deeper look into the long-term impacts. Environmental Science and Pollution Research. 2022;29:46438–57. 10.1007/s11356-022-20259-1. [CrossRef] [Google Scholar]
- Santos-Rosales V., López-Iglesias C., Sampedro-Viana A., Alvarez-Lorenzo C., Ghazanfari S., Magarinos B., et al. Supercritical CO(2) sterilization: An effective treatment to reprocess FFP3 face masks and to reduce waste during COVID-19 pandemic. The Science of the total environment. 2022;826:154089. 10.1016/j.scitotenv.2022.154089. [CrossRef] [Google Scholar]
- Kumar S., Karmacharya M., Joshi S.R., Gulenko O., Park J., Kim G.-H., et al. Photoactive Antiviral Face Mask with Self-Sterilization and Reusability. Nano Letters. 2021;21:337–343. 10.1021/acs.nanolett.0c03725. [CrossRef] [Google Scholar]
- Maderuelo-Sanz R., Acedo-Fuentes P., Garcia-Cobos F.J., Sánchez-Delgado F.J., Mota-López M.I., Meneses-Rodríguez J.M. The recycling of surgical face masks as sound porous absorbers: Preliminary evaluation. Science of The Total Environment. 2021;786:147461. https://doi.org/10.1016/j.scitotenv.2021.147461. [CrossRef] [Google Scholar]
- Nawaz A., Kumar P. Thermal degradation of hazardous 3-layered COVID-19 face mask through pyrolysis: Kinetic, thermodynamic, prediction modelling using ANN and volatile product characterization. Journal of the Taiwan Institute of Chemical Engineers. 2022;139:104538. https://doi.org/10.1016/j.jtice.2022.104538. [CrossRef] [Google Scholar]
- Potnuri R., Suriapparao D.V., Rao C.S., Kumar T.H. Understanding the role of modeling and simulation in pyrolysis of biomass and waste plastics: A review. Bioresource Technology Reports. 2022;20:101221. https://doi.org/10.1016/j.biteb.2022.101221. [CrossRef] [Google Scholar]
- Arenas C.N., Navarro M.V., Martínez J.D. Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model. Bioresource Technology. 2019;288:121485. https://doi.org/10.1016/j.biortech.2019.121485. [CrossRef] [Google Scholar]
- Sun S., Yuan Y., Chen R., Xu X., Zhang D. Kinetic, thermodynamic and chemical reaction analyses of typical surgical face mask waste pyrolysis. 2021;26:101135. 10.1016/j.tsep.2021.101135. [Google Scholar]
- Ng Q.H., Chin B.L.F., Yusup S., Loy A.C.M., Chong K.Y.Y. Modeling of the co-pyrolysis of rubber residual and HDPE waste using the distributed activation energy model (DAEM). Applied Thermal Engineering. 2018;138:336–345. https://doi.org/10.1016/j.applthermaleng.2018.04.069. [CrossRef] [Google Scholar]
- Jung S., Lee S., Dou X., Kwon E.E. Valorization of disposable COVID-19 mask through the thermo-chemical process. Chemical Engineering Journal. 2021;405:126658. https://doi.org/10.1016/j.cej.2020.126658. [CrossRef] [Google Scholar]
- Plieth W. 7 - Nucleation and Growth of Metals. In: Plieth, W., editor. Electrochemistry for Materials Science. Amsterdam: Elsevier; 2008. p. 195–229. [CrossRef] [Google Scholar]
- Balogun A.O., Lasode O.A., McDonald A.G. Devolatilisation kinetics and pyrolytic analyses of Tectona grandis (teak). Bioresource Technology. 2014;156:57–62. https://doi.org/10.1016/j.biortech.2014.01.007. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.