Open Access
Issue
MATEC Web Conf.
Volume 377, 2023
Curtin Global Campus Higher Degree by Research Colloquium (CGCHDRC 2022)
Article Number 01002
Number of page(s) 7
Section Engineering and Technologies for Sustainable Development
DOI https://doi.org/10.1051/matecconf/202337701002
Published online 17 April 2023
  1. H.J. Dowsett, “Foraminifera. In: Gornitz, V. (eds) Encyclopaedia of Paleoclimatology and Ancient Environments,” Encyclopaedia of Earth Sciences Series, Springer, Dordrecht, 2009. [Google Scholar]
  2. J.W. Murray, “Ecology and applications of Benthic Foraminifera. Cambridge University Press, Cambridge”, 2006, pp. 438 [Google Scholar]
  3. F.O. Amore, M. Caffau, B. Massa, and S. Morabito, “Late Pleistocene-Holocene paleoclimate and related paleoenvironmental changes as recorded by calcareous nannofossils and planktonic foraminifera assemblages in the southern Tyrrhenian Sea (Cape Palinuro, Italy),” Marine Micropaleontology, vol. 52, no 1-4, pp. 255–276, Feb. 2004 [CrossRef] [Google Scholar]
  4. M.L. Canales and M.H. Henriques, “Foraminifera from the Aalenian and the Bajocian GSSP (Middle Jurassic) of Murtinheira section (Cabo Mondego, West Portugal): Biostratigraphy and paleoenvironmental implications.” Mar. Micropaleontol., vol.67, no. 1-2, pp.155–179, Apr. 2008. [CrossRef] [Google Scholar]
  5. F. Falzoni, M.R. Petrizzo, K.G. Macleod, and B.T. Huber, “Santonian-Campanian planktonic foraminifera from Tanzania, Shatsky Rise and Exmouth Plateau: Species depth ecology and paleoceanographic inferences.” Mar. Micropaleontol., vol.103, pp.15–29, Sep. 2013. [CrossRef] [Google Scholar]
  6. X. Benito, “Benthic Foraminifera and Diatoms as Ecological Indicators,” in Modern Trends in Diatom Identification, vol. 10. G. Cristobal, S. Blanco, and G. Bueno, Eds. Cham, Switzerland: Springer, 2020. [Google Scholar]
  7. J.W. Murray, Ecology and Palaeocology of Benthic Foraminifera. Essex, UK: Longman Scientific and Technical, 1991, pp.365 [Google Scholar]
  8. R.M. Leckie, and H.C. Olson, “Foraminifera as proxies for sea-level change on siliciclastic margins,” in Micropaleontologic proxies for sea-level change and stratigraphic Discontinuities, SEPM Spec. Publ., vol.75, pp.5–19, 2003 [Google Scholar]
  9. B. Wilson, “Using foraminifera to estimate trends in ancient sea-levels,” Geology Today, vol.22, no.5, pp.19–20, Sep. 2006 [Google Scholar]
  10. M. Seelinger, A. Pint, P. Frenzel, S. Feuser, F. Pirson, S. Riedesel, and H. Brückner, “Foraminifera as markers of Holocene sea-level fluctuations and water depths of ancient harbours—A case study from the Bay of Elaia (W Turkey),” Palaeogeogr. Palaeoclimatol. Palaeoecol., vol. 482, pp. 17–29, Sep. 2017. [CrossRef] [Google Scholar]
  11. G.J. Van der Zwaan, I.A.P. Duijnstee, M.D. Dulka, S.R. Ernst, N.T. Jannink, and T.J. Kouwenhoven, “Benthic foraminifers: proxies or problems?: A review of paleocological concepts.” Earth Sci. Rev., vol.46, no 1-4, pp. 213–236, May. 1999. [CrossRef] [Google Scholar]
  12. P. Hallock, and W. Schlager, “ Nutrient excess and the demise of coral reefs and carbonate platforms,” Palaios, vol. 1, no. 4, pp. 389–398, Aug. 1986. [CrossRef] [Google Scholar]
  13. S.J. Beavington-Penney, and A. Racey, “Ecology of extant nummulitids and other larger benthic foraminifera: applications in palaeoenvironmental analysis,” Earth Sci. Rev., vol.67, no 3-4, pp. 219–265, Oct. 2004. [CrossRef] [Google Scholar]
  14. P. Hallock, “Trends in test shape with depth in large, symbiont-bearing foraminifera,” J. Foraminiferal Res., vol.9, no.1, pp.61–69, Jan. 1979. [CrossRef] [Google Scholar]
  15. P. Hallock, and H.J. Hansen, “Depth adaptation in Amphistegina: change in lamellar thickness,” Bull. Geol. Soc. Denmark, vol. 27, pp. 99–104, Mar. 1979. [CrossRef] [Google Scholar]
  16. A.R. Loeblich, and H. Tappan, “Foraminiferal Genera and their classification,” New York: Springer, 2015 [Google Scholar]
  17. C.G. Adams, “The foraminifera and stratigraphy of the Melinau Limestone, Sarawak, and its importance in Tertiary correlation,” J. Geol. Soc. London, vol.121, pp.283–338, May 1965. [CrossRef] [Google Scholar]
  18. B. Jasin, and T.M. Taj Ahmad, “ Some Paleogene planktonic foraminifera from the Lubok Antu Complex, Sarawak,” Warta Geologi, vol.21, no.3, pp.147–151, May-June 1995. [Google Scholar]
  19. C.P. Lee, M.S. Leman, K. Hassan, B. Md Nasib, and R. Karim, “Stratigraphic Lexicon of Malaysia,” [Online] Available: https://gsm.org.my/products/702001-101655-PDF.pdf [Google Scholar]
  20. P. Liechti, F.W. Roe, and N.S. Haile, “The Geology of Sarawak, Brunei and the western part of North Borneo,” Bull. Brit. Borneo Geol. Survey, vol.3, pp. 360 [Google Scholar]
  21. C.H. Kho, “Bintulu Area, Central Sarawak, East Malaysia,” Borneo Region Geol. Survey Report, no.5, pp.83 [Google Scholar]
  22. R.M. Banda, and E. Aji, “Progress report: geological Mapping of the Usun Apau Area, Sarawak,” Geological Survey of Malaysia Annual Report, pp. 430–440. [Google Scholar]
  23. A. Adams, and I. MacKenzie, “Carbonate sediments and rocks under the microscope: a colour atlas,” London: CRC Press, 1998 [CrossRef] [Google Scholar]
  24. P.A. Scholle, and D.S. Ulmer-Scholle, “A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis,” AAPG Memoir, no. 77, Jan. 2003. [Google Scholar]
  25. M.K. Boudagher-fadel, “Evolution and geological significance of larger benthic foraminifera,” Armsterdam: Elsevier, 2008 [Google Scholar]
  26. E. Flügel, “Microfacies Analysis of limestones, analysis interpretation, and application,” Berlin, Heidelberg: Springer-Verlag, 2010 [Google Scholar]
  27. M. Martinuš, K. Fio, K. Pikelj, and Š. Aščić, “Middle Miocene warm-temperate carbonates of Central Paratethys (Mt. Zrinska Gora, Croatia): paleoenvironmental reconstruction based on bryozoans, coralline red algae, foraminifera, and calcareous nannoplankton,” Facies, vol. 59, no.3, pp. 481–504, Sep. 2012. [Google Scholar]
  28. N. Ali, E. Özcan, A.O. Yücel, M. Hanif, S.I. Hashmi, F. Ullah, M. Rizwan and J. Pignatti, “Bartonian orthophragminids with new endemic species from the Pirkoh and Drazinda formations in the Sulaiman Range, Indus Basin, Pakistan,” Geodin. Acta, vol.30, no.1, pp.31–62, Jan. 2018. [CrossRef] [Google Scholar]
  29. K. Mehr, and M.H. Adabi, “ Application of large benthic foraminifera as a tool for interpretation of paleoclimate and water depth, in the Ziyarat Formation, Alborz, Iran,” Geophys. Res. Abstr., vol.11, April 2009. [Google Scholar]
  30. K. Kaiho, “Effect of organic carbon flux and dissolved oxygen on the benthic foraminiferal oxygen index (BFOI),” Mar. Micropaleontol., vol.37, no.1, pp. 67–76, July 1999. [CrossRef] [Google Scholar]
  31. K. Kaiho, “ Evolution in the test size of deep-sea benthic foraminifera during the past 120m.y.,” Mar. Micropaleontol., vol.37, no.1, pp. 53–65, July 1999. [CrossRef] [Google Scholar]
  32. B.W. Logan, and D.E. Cebulski, “Sedimentary environments of Shark Bay, Western Australia,” in Carbonate Sedimentation and Environments, Shark Bay, Western Australia, vol.13, B.W. Logan, G.R. Davies, J.F. Read, and D.E. Cebulski, AAPG Memoir, 1970, pp. 1–37 [Google Scholar]
  33. J.A. Kleypass, R.W. Buddmeier, D. Archer, J.P. Gattuso, C. Langdon, and B.N. Opydyke, “ Geochemical consequences of increased atmospheric carbon dioxide on coral reefs,” Science, vol.284, no.5411, pp.118–120, Apr. 1999. [CrossRef] [Google Scholar]
  34. Z.K. Mossadegh, D.W. Haig, T. Allan, M.H. Adabi, and A. Sadeghi, “Salinity changes during late Oligocene to early Miocene Asmari formation deposition, Zagros mountains, Iran,” Palaeogeogr. Palaeoclimatol. Palaeoecol., vol.272, no. (1-2), pp.17–36, Feb. 2009. [CrossRef] [Google Scholar]
  35. J.C. Braga, D. Bassi, and W.E. Piller, “Paleoenvironmental significance of Oligocene-Miocene Coralline Red Algae - a review,” in Carbonate Systems during the Oligocene – Miocene Climatic Transition, M. Mutti, W. Piller, and C. Betzler, pp.165–182, Apr. 2012 [CrossRef] [Google Scholar]
  36. S. Sarkar, A.K. Ghosh, and G.M. Narasimha Rao, “Coralline algae and benthic foraminifera from the long formation (middle Miocene) of the Little Andaman Island, India: Biofacies analysis, systematics and palaeoenvironmental implications,” J. Geol. Soc. India, vol. 87, pp.69–84, Jan. 2016. [CrossRef] [Google Scholar]
  37. E. Flügel, “Microfacies of Carbonate Rocks” Berlin, Heidelberg: Springer-Verlag, 2004. [CrossRef] [Google Scholar]
  38. S.J. Hageman, Y. Bone, B. McGowran, and N.P. James, “Bryozoan colonial growth-forms as paleoenvironmental indicators: evaluation of methodology,” Palaios, vol.12, no.5, pp.405–419, Oct. 1997. [CrossRef] [Google Scholar]
  39. M.A. Best, and J.P. Thorpe, “The effect of suspended particulate matter (silt) on the feeding activity of the intertidal etenostomate bryozoan Flustrellidra hispida (Fabricius),” in Bryozoans in Space and Time, D.P. Gordon, A.M. Smith, and J.A. Grant-Mackie (eds.), Wellington: National Institute of Water and Atmospheric Research Ltd, 1996, pp.39–45 [Google Scholar]
  40. H. Chamley, Seafloor Processes: Encyclopedia of Ocean Sciences, 3rd ed. pp.74–81 [Google Scholar]
  41. P.E. Cloud, “Physical Limits of Glauconite Formation,” Am Assoc Pet Geol Bull., vol.39, no.4, pp.484–492, Apr. 1955. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.