Open Access
Issue |
MATEC Web Conf.
Volume 377, 2023
Curtin Global Campus Higher Degree by Research Colloquium (CGCHDRC 2022)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 13 | |
Section | Engineering and Technologies for Sustainable Development | |
DOI | https://doi.org/10.1051/matecconf/202337701004 | |
Published online | 17 April 2023 |
- A. K. Karmaker, M. M. Rahman, M. A. Hossain, and M. R. Ahmed, “Exploration and corrective measures of greenhouse gas emission from fossil fuel power stations for Bangladesh,” J. Clean. Prod., vol. 244, p. 118645, Jan. 2020, doi: 10.1016/j.jclepro.2019.118645. [CrossRef] [Google Scholar]
- W. K. Wang, Y. H. Hu, G. Z. Liao, W. L. Zeng, and S. Y. Wu, “Hydrogen fermentation by photosynthetic bacteria mixed culture with silicone immobilization and metagenomic analysis,” Int. J. Hydrogen Energy, Dec. 2021, doi: 10.1016/J.IJHYDENE.2021.12.004. [Google Scholar]
- D. H. Lee, “Biohydrogen yield efficiency and the benefits of dark, photo and dark-photo fermentative production technology in circular Asian economies,” Int. J. Hydrogen Energy, vol. 46, no. 27, pp. 13908–13922, Apr. 2021, doi: 10.1016/J.IJHYDENE.2020.08.275. [CrossRef] [Google Scholar]
- X. Li et al., “Revealing the mechanisms of rhamnolipid enhanced hydrogen production from dark fermentation of waste activated sludge,” Sci. Total Environ., vol. 806, p. 150347, Feb. 2022, doi: 10.1016/J.SCITOTENV.2021.150347. [CrossRef] [Google Scholar]
- A. Velazquez Abad and P. E. Dodds, “Production of Hydrogen,” in Encyclopedia of Sustainable Technologies, Elsevier, 2017, pp. 293–304. [CrossRef] [Google Scholar]
- I. Moussallem, J. Jörissen, U. Kunz, S. Pinnow, and T. Turek, “Chlor-alkali electrolysis with oxygen depolarized cathodes: History, present status and future prospects,” J. Appl. Electrochem., vol. 38, no. 9, pp. 1177–1194, Sep. 2008, doi: 10.1007/s10800-008-9556-9. [CrossRef] [Google Scholar]
- L. Vernès, Y. Li, F. Chemat, and M. Abert-Vian, “Biorefinery Concept as a Key for Sustainable Future to Green Chemistry—The Case of Microalgae,” pp. 1550, 2019, doi: 10.1007/978-981-13-3810-6_2. [Google Scholar]
- C. Barca, D. Ranava, M. Bauzan, J. H. Ferrasse, M. T. Giudici-Orticoni, and A. Soric, “Fermentative hydrogen production in an up-flow anaerobic biofilm reactor inoculated with a co-culture of Clostridium acetobutylicum and Desulfovibrio vulgaris,” Bioresour. Technol., vol. 221, pp. 526–533, Dec. 2016, doi: 10.1016/J.BIORTECH.2016.09.072. [CrossRef] [Google Scholar]
- D. H. Kim and M. S. Kim, “Hydrogenases for biological hydrogen production,” Bioresour. Technol., vol. 102, no. 18, pp. 8423–8431, Sep. 2011, doi: 10.1016/j.biortech.2011.02.113. [CrossRef] [Google Scholar]
- N. Akhlaghi and G. Najafpour-Darzi, “A comprehensive review on biological hydrogen production,” International Journal of Hydrogen Energy, vol. 45, no. 43. Elsevier Ltd, pp. 22492–22512, Sep. 03, 2020, doi: 10.1016/j.ijhydene.2020.06.182. [CrossRef] [Google Scholar]
- G. A. O’Toole, “Classic Spotlight: How the Gram Stain Works,” J. Bacteriol., vol. 198, no. 23, pp. 3128–3128, 2016, doi: 10.1128/JB.00726-16. [CrossRef] [Google Scholar]
- A. L. Koch, “Why are rod-shaped bacteria rod shaped?,” Trends Microbiol., vol. 10, no. 10, pp. 452–455, Oct. 2002, doi: 10.1016/S0966-842X(02)02440-X. [CrossRef] [Google Scholar]
- R. Ruhal and R. Kataria, “Biofilm patterns in gram-positive and gram-negative bacteria,” Microbiol. Res., vol. 251, p. 126829, Oct. 2021, doi: 10.1016/J.MICRES.2021.126829. [CrossRef] [Google Scholar]
- O. Sizar and C. G. Unakal, “Gram Positive Bacteria,” Manag. Antimicrob. Infect. Dis., pp. 29–41, Feb. 2022, doi: 10.1385/1-59259-036-5:29. [Google Scholar]
- D. V. Raju, A. Nagarajan, S. Pandit, M. Nag, D. Lahiri, and V. Upadhye, “Effect of bacterial quorum sensing and mechanism of antimicrobial resistance,” Biocatal. Agric. Biotechnol., vol. 43, p. 102409, Aug. 2022, doi: 10.1016/J.BCAB.2022.102409. [CrossRef] [Google Scholar]
- M. Urvoy, R. Lami, C. Dreanno, D. Delmas, S. L’Helguen, and C. Labry, “Quorum Sensing Regulates the Hydrolytic Enzyme Production and Community Composition of Heterotrophic Bacteria in Coastal Waters,” Front. Microbiol., vol. 12, p. 3831, Dec. 2021, doi: 10.3389/FMICB.2021.780759/BIBTEX. [CrossRef] [Google Scholar]
- R. M. M. Ziara, D. N. Miller, J. Subbiah, and B. I. Dvorak, “Lactate wastewater dark fermentation: The effect of temperature and initial pH on biohydrogen production and microbial community,” Int. J. Hydrogen Energy, vol. 44, no. 2, pp. 661–673, Jan. 2019, doi: 10.1016/j.ijhydene.2018.11.045. [CrossRef] [Google Scholar]
- X. Li et al., “Effect of salinity and pH on dark fermentation with thermophilic bacteria pretreated swine wastewater,” J. Environ. Manage., vol. 271, p. 111023, Oct. 2020, doi: 10.1016/j.jenvman.2020.111023. [CrossRef] [Google Scholar]
- A. Gadhe, S. S. Sonawane, and M. N. Varma, “Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater,” Int. J. Hydrogen Energy, vol. 40, no. 13, pp. 4502–4511, Apr. 2015, doi: 10.1016/J.IJHYDENE.2015.02.046. [CrossRef] [Google Scholar]
- L. Hakobyan, L. Gabrielyan, and A. Trchounian, “Bio-hydrogen production and the F0F1-ATPase activity of Rhodobacter sphaeroides: Effects of various heavy metal ions,” Int. J. Hydrogen Energy, vol. 37, no. 23, pp. 17794–17800, Dec. 2012, doi: 10.1016/J.IJHYDENE.2012.09.091. [CrossRef] [Google Scholar]
- T. M. Vatsala, S. M. Raj, and A. Manimaran, “A pilot-scale study of biohydrogen production from distillery effluent using defined bacterial coculture,” Int. J. Hydrogen Energy, vol. 33, no. 20, pp. 5404–5415, Oct. 2008, doi: 10.1016/J.IJHYDENE.2008.07.015. [CrossRef] [Google Scholar]
- Y. Asada et al., “Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV,” Int. J. Hydrogen Energy, vol. 31, no. 11, pp. 1509–1513, Sep. 2006, doi: 10.1016/J.IJHYDENE.2006.06.017. [CrossRef] [Google Scholar]
- N. Basak, A. K. Jana, D. Das, and D. Saikia, “Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: The present progress and future perspective,” Int. J. Hydrogen Energy, vol. 39, no. 13, pp. 6853–6871, Apr. 2014, doi: 10.1016/J.IJHYDENE.2014.02.093. [CrossRef] [Google Scholar]
- E. Özgür and B. Peksel, “Biohydrogen production from barley straw hydrolysate through sequential dark and photofermentation,” J. Clean. Prod., vol. 52, pp. 14–20, Aug. 2013, doi: 10.1016/J.JCLEPRO.2013.02.035. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.