Open Access
Issue |
MATEC Web Conf.
Volume 377, 2023
Curtin Global Campus Higher Degree by Research Colloquium (CGCHDRC 2022)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 12 | |
Section | Engineering and Technologies for Sustainable Development | |
DOI | https://doi.org/10.1051/matecconf/202337701001 | |
Published online | 17 April 2023 |
- Gbadamosi, A. O., Junin, R., Manan, M. A., Agi, A., & Yusuff, A. S.. (2019). An overview of chemical enhanced oil recovery: recent advances and prospects. International Nano Letters, 9(3), 171–202. [CrossRef] [Google Scholar]
- Abdullahi, M., Jufar, S., Kumar, S., Al-shami, T., & Negash, B.. (2022). Synergistic effect of Polymer-Augmented low salinity flooding for oil recovery efficiency in Illite-Sand porous media. Journal of Molecular Liquids, 358, 119217. [CrossRef] [Google Scholar]
- Wei, J., Chen, Y., Zhou, X., Wang, L., Fu, P., Yakushev, V., Zhou, R.. (2022). Experimental studies of surfactant-polymer flooding: An application case investigation. International Journal of Hydrogen Energy. [Google Scholar]
- Kakati, A., Kumar, G., & Sangwai, J. S.. (2020). Oil recovery efficiency and mechanism of low salinity-enhanced oil recovery for light crude oil with a low acid number. ACS omega, 5(3), 1506–1518. [CrossRef] [Google Scholar]
- Khishvand, M., Kohshour, I. O., Alizadeh, A. H., Piri, M., & Prasad, S.. (2019). A multiscale experimental study of crude oil-brine-rock interactions and wettability alteration during low-salinity waterflooding. Fuel, 250, 117–131. [CrossRef] [Google Scholar]
- Farhadi, H., Fatemi, M., & Ayatollahi, S.. (2021). Experimental investigation on the dominating fluid-fluid and rock-fluid interactions during low salinity water flooding in water-wet and oil-wet calcites. Journal of Petroleum Science and Engineering, 204, 108697. [CrossRef] [Google Scholar]
- Mokhtari, R., Anabaraonye, B. U., Afrough, A., Mohammadkhani, S., & Feilberg, K. L.. (2022). Experimental investigation of low salinity water-flooding in tight chalk oil reservoirs. Journal of Petroleum Science and Engineering, 208, 109282. [CrossRef] [Google Scholar]
- Lager, A., Webb, K. J., Black, C., Singleton, M., & Sorbie, K. S.. (2008). Low salinity oil recovery-an experimental investigation1. Petrophysics-The SPWLA Journal of Formation Evaluation and Reservoir Description, 49(01). [Google Scholar]
- Yue, L., Pu, W., Zhao, S., Zhang, S., Ren, F., & Xu, D.. (2020). Insights into mechanism of low salinity water flooding in sandstone reservoir from interfacial features of oil/brine/rock via intermolecular forces. Journal of Molecular Liquids, 113435. [CrossRef] [Google Scholar]
- Purswani, P., Tawfik, M. S., & Karpyn, Z. T.. (2017). Factors and mechanisms governing wettability alteration by chemically tuned waterflooding: a review. Energy & Fuels, 31(8), 7734–7745. [CrossRef] [Google Scholar]
- Bhicajee, P., & Romero-Zeron, L.. (2021). Effect of different low salinity flooding schemes and the addition of alkali on the performance of low-salinity waterflooding during the recovery of heavy oil from unconsolidated sandstone. Fuel, 289, 119981. [CrossRef] [Google Scholar]
- Katende, A., & Sagala, F.. (2019). A critical review of low salinity water flooding: mechanism, laboratory and field application. Journal of Molecular Liquids, 278, 627–649. [CrossRef] [Google Scholar]
- Xie, Q., Liu, F., Chen, Y., Yang, H., Saeedi, A., & Hossain, M. M.. (2019). Effect of electrical double layer and ion exchange on low salinity EOR in a pH controlled system. Journal of Petroleum Science and Engineering, 174, 418–424. [CrossRef] [Google Scholar]
- Saxena, N., Kumar, A., & Mandal, A.. (2019). Adsorption analysis of natural anionic surfactant for enhanced oil recovery: The role of mineralogy, salinity, alkalinity and nanoparticles. Journal of Petroleum Science and Engineering, 173, 1264–1283. [CrossRef] [Google Scholar]
- Khayati, H., Moslemizadeh, A., Shahbazi, K., Moraveji, M. K., & Riazi, S. H.. (2020). An experimental investigation on the use of saponin as a non-ionic surfactant for chemical enhanced oil recovery (EOR) in sandstone and carbonate oil reservoirs: IFT, wettability alteration, and oil recovery. Chemical Engineering Research and Design, 160, 417–425. [CrossRef] [Google Scholar]
- Kalam, S., Abu-Khamsin, S. A., Kamal, M. S., & Patil, S.. (2021). A review on surfactant retention on rocks: mechanisms, measurements, and influencing factors. Fuel, 293, 120459. [CrossRef] [Google Scholar]
- Southwick, J. G., van den Pol, E., van Rijn, C. H., van Batenburg, D. W., Boersma, D., Svec, Y., Raney, K. (2016). Ammonia as alkali for alkaline/surfactant/polymer floods. SPE Journal, 21(01), 10–21. [CrossRef] [Google Scholar]
- Liu, Z., Hedayati, P., Ghatkesar, M. K., Sun, W., Onay, H., Groenendijk, D., Sudhölter, E. J.. (2021). Reducing anionic surfactant adsorption using polyacrylate as sacrificial agent investigated by QCM-D. Journal of Colloid and Interface Science, 585, 1–11. [CrossRef] [Google Scholar]
- Bashir, A., Haddad, A. S., & Rafati, R.. (2021). A review of fluid displacement mechanisms in surfactant-based chemical enhanced oil recovery processes: analyses of key influencing factors. Petroleum Science. [Google Scholar]
- Kazemzadeh, Y., Shojaei, S., Riazi, M., & Sharifi, M.. (2019). Review on application of nanoparticles for EOR purposes: A critical review of the opportunities and challenges. Chinese Journal of Chemical Engineering, 27(2), 237–246. [CrossRef] [Google Scholar]
- Panchal, H., Patel, H., Patel, J., & Shah, M.. (2021). A systematic review on nanotechnology in enhanced oil recovery. Petroleum Research. [Google Scholar]
- Agi, A., Junin, R., Abdullah, M. O., Jaafar, M. Z., Arsad, A., Sulaiman, W. R. W., Gbadamosi, A.. (2020). Application of polymeric nanofluid in enhancing oil recovery at reservoir condition. Journal of Petroleum Science and Engineering, 194, 107476. [CrossRef] [Google Scholar]
- Behera, U. S., & Sangwai, J. S.. (2022). Silica nanofluid in low salinity seawater containing surfactant and polymer: Oil recovery efficiency, wettability alteration and adsorption studies. Journal of Petroleum Science and Engineering, 211, 110148. [CrossRef] [Google Scholar]
- Rostami, P., Sharifi, M., Aminshahidy, B., & Fahimpour, J.. (2019). Enhanced oil recovery using silica nanoparticles in the presence of salts for wettability alteration. Journal of Dispersion Science and Technology. [Google Scholar]
- Youssif, M. I., El-Maghraby, R. M., Saleh, S. M., & Elgibaly, A.. (2018). Silica nanofluid flooding for enhanced oil recovery in sandstone rocks. Egyptian journal of petroleum, 27(1), 105–110. [CrossRef] [Google Scholar]
- Rashidi, M., Kalantariasl, A., Saboori, R., Haghani, A., & Keshavarz, A.. (2021). Performance of environmental friendly water-based calcium carbonate nanofluid as enhanced recovery agent for sandstone oil reservoirs. Journal of Petroleum Science and Engineering, 196, 107644. [CrossRef] [Google Scholar]
- Jha, N. K., Ali, M., Iglauer, S., Lebedev, M., Roshan, H., Barifcani, A., Sarmadivaleh, M.. (2019). Wettability alteration of quartz surface by low-salinity surfactant nanofluids at high-pressure and high-temperature conditions. Energy & Fuels, 33(8), 7062–7068. [CrossRef] [Google Scholar]
- Yekeen, N., Padmanabhan, E., Syed, A. H., Sevoo, T., & Kanesen, K.. (2020). Synergistic influence of nanoparticles and surfactants on interfacial tension reduction, wettability alteration and stabilization of oil-in-water emulsion. Journal of Petroleum Science and Engineering, 186, 106779. [CrossRef] [Google Scholar]
- Youssif, M. I., El-Maghraby, R. M., Saleh, S. M., & Elgibaly, A. A.. (2018). Sol-Gel Tailored Synthesized Nanosilica for Enhanced Oil Recovery in Water-Wet and Oil-Wet Benthemier Sandstone. Energy & Fuels, 32(12), 12373–12382. [CrossRef] [Google Scholar]
- Sofla, S. J. D., James, L. A., & Zhang, Y.. (2018). Insight into the stability of hydrophilic silica nanoparticles in seawater for Enhanced oil recovery implications. Fuel, 216, 559–571. [CrossRef] [Google Scholar]
- Eltoum, H., Yang, Y.-L., & Hou, J.-R.. (2021). The effect of nanoparticles on reservoir wettability alteration: a critical review. Petroleum Science, 18(1), 136–153. [CrossRef] [Google Scholar]
- Aminian, A., & ZareNezhad, B.. (2019). Wettability alteration in carbonate and sandstone rocks due to low salinity surfactant flooding. Journal of Molecular Liquids, 275, 265–280. [CrossRef] [Google Scholar]
- Rezaei, A., Riazi, M., Escrochi, M., & Elhaei, R.. (2020). Integrating surfactant, alkali and nano-fluid flooding for enhanced oil recovery: A mechanistic experimental study of novel chemical combinations. Journal of Molecular Liquids, 308, 113106. [CrossRef] [Google Scholar]
- Saha, R., Uppaluri, R. V., & Tiwari, P.. (2017). Effect of mineralogy on the adsorption characteristics of surfactant—Reservoir rock system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 531, 121–132. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.