Issue |
MATEC Web Conf.
Volume 377, 2023
Curtin Global Campus Higher Degree by Research Colloquium (CGCHDRC 2022)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 12 | |
Section | Engineering and Technologies for Sustainable Development | |
DOI | https://doi.org/10.1051/matecconf/202337701001 | |
Published online | 17 April 2023 |
Wettability alteration and surfactant adsorption study of methyl ester sulphonate/nano-silica nanofluid on sandstone reservoir rock
a Chemical and Energy Department, Faculty of Engineering and Science, Curtin University Malaysia, Malaysia
b School of Engineering and Physical Sciences, Heriot Watt University, Malaysia
E-mail: stanley.ssl@postgrad.curtin.edu.my
This research project set out to investigate low salinity water/Methyl Ester Sulphonate (MES) surfactant/nano-silica synergy to enhance oil recovery from sandstone reservoir. A Series of experimental works, including contact angle measurements (Sessile drop technique) and UV-vis spectrophotometer tests, were conducted to ascertain the effect of the synergy solution on wettability alteration and surfactant adsorption reduction. Results showed that MES surfactant at 750 ppm and 1000 ppm reversed oil-wet sandstone to a water-wet state. Further reduction was observed at low salinity (250 ppm CaCl2) under high pH conditions. The lowest contact angle measured was 18 degrees with the synergy solution of 750 ppm MES and 250 ppm CaCl2 at high pH conditions. The maximum adsorption capacity was used as criteria to measure surfactant adsorption loss reduction. It was observed that surfactant adsorption capacity reduced from 4.66 mg/g to 0.85 mg/g when 25 ppm nano-silica was added at 70℃ temperature. This shows that the synergy was able to restore wettability to preferable water-wet conditions to support oil recovery and reduce the excessive loss of surfactant to the sandstone reservoir rock. Water-wet wettability condition and surfactant adsorption reduction are beneficial to the c-EOR project in terms of efficient cost savings on the quantity of surfactant usage for the project. At the same time, overall additional oil recovery is greatly improved.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.