Open Access
MATEC Web Conf.
Volume 375, 2023
21st International Conference Diagnostics of Machines and Vehicles “Hybrid Multimedia Mobile Stage”
Article Number 02004
Number of page(s) 8
Section Selected Problems of Transport and Logistics of Hybrid Multimedia Mobile Stages
Published online 08 February 2023
  1. Regulation N 52. Uniform provisions concerning the approval of the categories M2 and M3 small capacity vehicles with regard to their general construction. [Google Scholar]
  2. Regulation N 36. E/ECE/324-E/ECE/TRANS/505/Rev.1/Add.35/Rev.3 Buses. Safety of construction. General requirements. [Google Scholar]
  3. Ivanytskyi A.G., Botyan S.S. Assessment of evacuation of people in case of fire in public bus transport of class II-III using experimental data of people movement and results of fire simulation Bulletin of the Command and Engineering Institute of the Ministry of Emergencies of the Republic of Belarus, No. 1 (21), 2015. Р.75-79. [Google Scholar]
  4. Klüpfel H., Meyer-König T., Wahle J., Schreckenberg M. Microscopic Simulation of Evacuation Processes on Passenger Ships Proceedings of the Fourth International Conference on Cellular Automata for Research and Industry: Theoretical and Practical Issues on Cellular Automata. October 2000. P.63–71. [Google Scholar]
  5. Kantemirov D.V., Kuryanskyi M.K. Deriving the dimensions of a passenger plane taking into account its transport capabilities. Scientific Bulletin of the GosNIY GA 2015 No. 7. Р.67-73. [Google Scholar]
  6. Ivshin K. S. Theoretical and methodological foundations of the design of small-sized vehicles: dissertation ... Ph.D.: 17.00.06. FSBOU Moscow State University of Design and Technology, 2016. 434 p. [Google Scholar]
  7. Ivshin K.S. Classification and modeling of assembly and landing schemes of small vehicles. // Design and technologies. – 2016. – No. 52 (94). P.6-9. [Google Scholar]
  8. Polozov A. V. Selection of rational layout schemes of small-sized vehicles at the design-project stage: Abstract of the dissertation k. t. n.: 05.05.03, 2013.27 p. [Google Scholar]
  9. Yatsenko S. A. Studies of filling coefficients on city bus routes. // Irkutsk National Technical University: Izvestiya VolgGTU. 2015. P.101-104. [Google Scholar]
  10. Khudov, Hennadii and Ruban, Igor and Makoveichuk, Oleksandr and Pevtsov, Hennady and Khudov, Vladyslav and Khizhnyak, Irina and Fryz, Sergii and Podlipaiev, Viacheslav and Polonskyi, Yurii and Khudov, Rostyslav, Development of Methods for Determining the Contours of Objects for a Complex Structured Color Image Based on the Ant Colony Optimization Algorithm (December 31, 2019). Physics and Engineering, (1), 34-47, 2020. doi. 10.21303/2461-4262.2020.001108, Available at SSRN: [Google Scholar]
  11. Oleynyk A.A. Comparative analysis of methods of optimization on the basis of the method of ant colonies / A.A. Oleynyk // Computer modeling and intellectual systems: a collection of scientific works / [ed. D. M. Pisa, S. O. Subotina]. – Zaporizhzhia: ZNTU, 2007. – P.147–159. [Google Scholar]
  12. Kennedy J. Particle swarm optimization / J. Kennedy, R. Eberhart // International Conference on Neural Networks: Proceedings of the 1995 IEEE. NJ: IEEE Press, 1995. P.1942–1948. [Google Scholar]
  13. Braendler D. The suitability of particle swarm optimization for training neural hardware / D. Braendler, T. Hendtlass // Proceedings of the Fifteenth International Conference on Industrial and Engineering, Applications of Artificial Intelligence And Expert Systems. Cairns: Springer, 2002. P.190–199. [Google Scholar]
  14. Makoveichuk O.M. Information swarm technology of thematic segmentation of images obtained from on-board optical-electronic surveillance systems / I. A. Khizhnyak, O. M. Makoveychuk, G. V. Hudov // Management, navigation and communication systems. – 2018. Issue 3. P. 26-32. Access mode: [Google Scholar]
  15. Makoveichuk O.M. Method of swarm intelligence (artificial bee colony (ABC)) thematic segmentation of an optical-electronic image / I. A. Khizhnyak, O. M. Makoveichuk, R. G. Hudov, V. O. Podlipaev, G. V. Gorban, H. V. Hudov // Management, navigation and communication systems. 2018. Issue 2. P. 91-96. Access mode: [Google Scholar]
  16. Hudov G.V., Khizhnyak I.A., Solomonenko Yu.S., Makoveychuk O.M. The swarm method of thematic segmentation of images of on-board environmental monitoring systems. Environmental sciences. No. 4(23). P. 24-28. [Google Scholar]
  17. Makoveichuk O. M. Modeling of transport flows by methods of cellular automata // Scientific Bulletin of National Technical University of Ukraine. 2007. No. 4. URL: (access date: 10/29/2022). [Google Scholar]
  18. Makoveichuk O. M., Zinko R. V. Principles of organization of an anisotropic environment for cellular automata // Scientific Bulletin of the National Technical University of Ukraine. 2007. No. 5. URL: (access date: 10/29/2022). [Google Scholar]
  19. Zinko R. V., Makoveychuk O. M. The principles of formation of an intellectual transport system // Scientific Bulletin of National Technical University of Ukraine. 2007. No. 6. URL: (access date: 10/29/2022). [Google Scholar]
  20. Malynetskyi H.G., Stepantsov M.E. Modeling of crowd movement dynamics with the help of cellular automata with the neighborhood of Margolus. Applied nonlinear dynamics, 1997, volume 5, number 5. Р.75-79. [Google Scholar]
  21. Toffoli T., Margolus N. Machines of cell machines. Moscow: Mir, 1991. [Google Scholar]
  22. Stepantsov M.E. Modeling of the dynamics of the movement of a group of people based on a lattice gas with nonlocal interactions. // Journals of Higher Education Institutions. Applied nonlinear dynamics, 1999, volume 7, number 5. Р.44-46. [Google Scholar]
  23. Sung, Mankyu; Gleicher, Michael; Chenney, Stephen (2004). “Scalable behaviors for crowd simulation”. Computer Graphics Forum. 23 (3): 519–28. [CrossRef] [Google Scholar]
  24. Hacohen, S., Shvalb, N., & Shoval, S. (2018). Dynamic model for pedestrian crossing in congested traffic based on probabilistic navigation function. Transportation research part C: emerging technologies, 86. Р.78-96. [Google Scholar]
  25. Guy, Stephen J.; Kim, Sujeong; Lin, Ming C.; Manocha, Dinesh (2011). Simulating heterogeneous crowd behaviors using personality trait theory. Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation – SCA ’11. pp. 43–52. doi:10.1145/2019406.2019413. [Google Scholar]
  26. Musse SR, Thalmann D.: Hierarchical model for real time simulation of virtual human crowds. In IEEE Transaction on Visualization and Computer Graphics (2001). – Р.152–164. [CrossRef] [Google Scholar]
  27. Li T., Jeng Y., Chang S.: Simulating virtual human crowds with a leader-follower model. In Proceedings of Computer Animation Conference (2001), The Computer Graphics Society and the IEEE Computer Society, Р.93–102. [Google Scholar]
  28. M. Sung, M. Gleicher & S. Chenney / Scalable behaviors for crowd simulation Eurographics 2004 Volume 23 (2004), Number 3 [Google Scholar]
  29. Patil, Sachin; Van Den Berg, Jur; Curtis, Sean; Lin, Ming C; Manocha, Dinesh (2011). Directing Crowd Simulations Using Navigation Fields. IEEE Transactions on Visualization and Computer Graphics 17 (2): 244–54. PMID 21149879. doi:10.1109/TVCG.2010.33. [CrossRef] [Google Scholar]
  30. Guy, Stephen J.; Kim, Sujeong; Lin, Ming C.; Manocha, Dinesh (2011). “Simulating heterogeneous crowd behaviors using personality trait theory”. Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation – SCA ’11. pp. 43–52. doi:10.1145/2019406.2019413. [Google Scholar]
  31. Kim, Sujeong; Guy, Stephen J.; Manocha, Dinesh; Lin, Ming C. (2012). “Interactive simulation of dynamic crowd behaviors using general adaptation syndrome theory”. Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games – I3D ’12. pp. 55–62. CiteSeerX doi:10.1145/2159616.2159626. [Google Scholar]
  32. Moore EF The shortest path through a maze // Proceedings of an International Symposium on the Theory of Switching (Cambridge, Massachusetts, April 2–5, 1957) Harvard University Press, 1959. Vol. 2. P. 285-292. 345 p. [Google Scholar]
  33. Lee, CY, “An Algorithm for Path Connections and Its Applications”, IRE Transactions on Electronic Computers, vol. EC-10, number 2, pp. 364-365, 1961. [Google Scholar]
  34. Rubin, F (1974), “The Lee Path Connection Algorithm”, IRE Transactions on Electronic Computers, C-23 (9): 907–914, doi:10.1109/TC.1974.224054. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.