Open Access
MATEC Web Conf.
Volume 374, 2023
International Conference on Applied Research and Engineering (ICARAE2022)
Article Number 01003
Number of page(s) 15
Section 1- Nanotechnology
Published online 05 January 2023
  1. Weiyi Zhang, Ming Hu, Xing Liu, Yulong Wei, Na Li, Yuxiang Qin. Synthesis of the cactus-like silicon nanowires/tungsten oxide nanowires composite for roomtemperature NO2 gas sensor. Journal of Alloy and Compounds 679 (2016) 391-399. [Google Scholar]
  2. H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh. Nanostructured tungsten oxide-properties, synthesis, and applications. Adv. Funct. Mater. 21 (2011) 2175. [CrossRef] [Google Scholar]
  3. S.K. Chong, C.F. Dee, S.A. Rahman. Single reactor deposition of silicon/tungsten oxide core-shell heterostructure nanowires with controllable structure and optical properties. RSC Adv. 5 (2015) 2346-2353. [Google Scholar]
  4. N. Lavanya, A.C. Anithaa, C. Sekar, K. Asokan, A. Bonavita, N. Donato, S.G. Leonardi, G. Neri. Effect of gamma irradiation on structural, electrical and gas sensing properties of tungsten oxide nanoparticles. Journal of Alloys and Compounds 693 (2017) 366-372. [Google Scholar]
  5. Lassner, Erik and Wolf-Dieter Schubert (1999). Tungsten: properties, chemistry, technology of the element, alloys, and chemical compound. New York: Kluwer Academic. ISBN 0-306-45053-4. [Google Scholar]
  6. Solleti Goutham, Sukhpreet Kaur, Kishor Kumar Sadasivuni, Jayanta Kumar Bal, Naradala Jayarambabu, Devarai Santhosh Kumar, Kalagadda Venkateswara Rao. Nanostructured ZnO gas sensors obtained by green method and combustion technique. Materials Science in Semiconductor Processing 57 (2017) 110-115. [Google Scholar]
  7. Ali Mirzaei, Gun-Joo Sun, Jae Kyung Lee, Chongmu Lee, Seungbok Choi, Hyoun Woo Kim. Hydrogen sensing properties and mechanism of NiO-Nb2O5 composite nanoparticle-based electrical gas sensors. Ceramics International (2017) 2-8. [Google Scholar]
  8. Martin S. Barbosa, Pedro H. Suman, Jae J. Kim, Harry L. Tuller, José A. Varela, Marcelo O. Orlandi. Gas sensor properties of Ag- and Pd-decorated SnO micro-disks toNO2, H2and CO: Catalyst enhanced sensor response and selectivity. Sensors and Actuators B 239 (2017) 253–261. [Google Scholar]
  9. Christopher S. Dandeneau, Yu-Hong Jeon, Christopher T. Shelton, Tom K. Plant, David P. Cann, Brady J. Gibbons. Thin film chemical sensors based on p-CuO/n-ZnO heterocontacts. Thin Solid Films 517 (2009) 4448–4454. [Google Scholar]
  10. J. Liang, W. Li, J. Liu, M. Hu. Room temperature NO2 sensing performance of freestanding mesh-structure vanadium dioxide nanorods by a chemical vapour deposition method. Journal of Alloys and Compounds 687 (2016) 845-854. [Google Scholar]
  11. Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani. Influence of annealing on microstructure and NO2-sensing properties of sputtered WO3 thin films. Sens. Actuators B 128 (2007) 173-178. [Google Scholar]
  12. Pi-Guey Su, Te-Tsun Pan. Fabrication of a room-temperature NO2 gas sensor based on WO3 films and WO3/MWCNT nanocomposite films by combining polyol process with metalorganic decomposition method. Materials Chemistry and Physics 125 (2011) 351–357. [Google Scholar]
  13. Angela I. Lopez-Lorente, Miguel Valcarcel. The third way in analytical nanoscience and nanotechnology: Involvement of nanotools and nanoanalytes in the same analytical process. Trends in Analytical Chemistry 75 (2016) 1-9. [Google Scholar]
  14. Gun-Joo Sun, Hyejoon Kheel, Jae Kyung Lee, Seungbok Choi, Sangmin Lee, Chongmu Lee. H2S gas sensing properties of Fe2O3 nanoparticle-decorated NiO nanoplate sensors. Surface and Coatings Technology 307 (2016) 1088-1095. [Google Scholar]
  15. Stanislav Haviar, Sarka Chlupova, Peterkus, Marcel Gillet, Vladimir Matolin, Iva Matolinova. Micro-contacted self-assembled tungsten oxide nanorods for hydrogen gas sensing. International Journal of Hydrogen Energy xxx (2016) 1-9. [Google Scholar]
  16. S.B. Upadhyay, R.K. Mishra, P.P. Sahay. Cr-doped WO3 nanosheets: Structural, optical and formaldehyde sensing properties. Ceramics International 42 (2016) 15301-15310. [CrossRef] [Google Scholar]
  17. Engin Ciftyurek, Katarzyna Sabolsky, Edward M. Sabolsky. Molybdenum and tungsten oxide based gas sensors for high temperature detection of environmentally hazardous sulfur species. Sensors and Actuators B 237 (2016) 262-274. [Google Scholar]
  18. D. Depla, S. Mahieu, J.E. Greene. Sputter deposition processes. (2010) 1-36. [Google Scholar]
  19. Derek R. Miller, Sheikh A. Akbar, Patricia A. Morris. Nanoscale metal oxide-base heterojunctions for gas sensing: A review. Sensors and Actuators B 204 (2014) 250-272. [Google Scholar]
  20. Y.G. Choi, G. Sakai, K. Shimanoe, N. Miura, N. Yamazoe, Sens. Receptor Function and Response of Semiconductor Gas Sensor. Actuators B 95 (2003) 258–265. [CrossRef] [Google Scholar]
  21. T. Kida, A. Nishiyama, M. Yuasa, K. Shimanoe, N. Yamazoe. Metal Oxide Semi- Conductor Gas Sensors in Environmental Monitoring. Sens. Actuators B 135 (2009) 568–574. [Google Scholar]
  22. Dongzhi Zhang, Zhenling Wu, Peng Li, Xiaoqi Zong, Guokang Dong, Yong Zhang. Facile fabrication of polyaniline/multi-walled carbonnanotubes/molybdenum disulfide ternary nanocomposite and its high-performance ammonia-sensing at room temperature. Sensors and Actuators B 258 (2018) 895–905. [Google Scholar]
  23. Yuxiu Li, Dongyang Deng, Nan Chen, Xinxin Xing, Xu Liu, Xuechun Xiao, Yude Wang. Pd nanoparticles composited SnO2 microspheres as sensing materials for gas sensors with enhanced hydrogen response performances. Journal of Alloys and Compounds 710 (2017) 216-224. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.