Open Access
MATEC Web Conf.
Volume 372, 2022
International Conference on Science and Technology 2022 “Advancing Science and Technology Innovation on Post Pandemic Through Society 5.0” (ICST-2022)
Article Number 08004
Number of page(s) 3
Section Process Engineering and Manufacture
Published online 08 December 2022
  1. J. O. Afolayan, “Economic efficiency of glued joints in timber truss systems,” Build. Environ., vol. 34, No. 2, pp. 101–107, (1998). [CrossRef] [Google Scholar]
  2. B. Kromoser, M. Ritt, A. Spitzer, R. Stangl, and F. Idam, “Design concept for a greened timber truss bridge in city area,” Sustainability, vol. 12, No. 8, p. 3218, (2020). [Google Scholar]
  3. Z. Li, R. Zhou, M. He, and X. Sun, “Modern timber construction technology and engineering applications in China,” in Proceedings of the Institution of Civil Engineers-Civil Engineering, (2018), vol. 172, No. 5, pp. 17–27. [Google Scholar]
  4. L. Villegas, R. Moran, and J. J. Garcia, “Combined culm-slat Guadua bamboo trusses,” Eng. Struct., vol. 184, pp. 495–504, (2019). [CrossRef] [Google Scholar]
  5. A. Bukauskas et al., “Whole timber construction: A state of the art review,” Constr. Build. Mater., vol. 213, pp. 748–769, (2019). [CrossRef] [Google Scholar]
  6. B. Doloksaribu and D. S. Nababan, “Studi Ekperimental Kekuatan Struktur Rangka Batangdengan Menggunakan Kayu Bus Merauke,” Mustek Anim Ha, vol. 10, No. 3, pp. 112–116, (2021). [Google Scholar]
  7. R. Mulyadi, S. Wijaya, and S. Suwarjo, “Analisa Struktur Rangka Atap Gedung Rektorat Universitas Muara Bungo (Rangka Kuda-Kuda Type Single Frame Beam),” J. KOMPOSITS, vol. 1, No. 1, (2020). [Google Scholar]
  8. M. H. Ramage et al., “The wood from the trees: The use of timber in construction,” Renew. Sustain. Energy Rev., vol. 68, pp. 333–359, (2017). [Google Scholar]
  9. R. Garay, F. Pfenniger, M. Castillo, and C. Fritz, “Quality and sustainability indicators of the prefabricated wood housing industry—A Chilean case study,” Sustainability, vol. 13, No. 15, p. 8523, (2021). [Google Scholar]
  10. S. Xiao et al., “Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material,” Science (80-.)., vol. 374, No. 6566, pp. 465–471, (2021). [Google Scholar]
  11. T. Farid, M. I. Rafiq, A. Ali, and W. Tang, “Transforming wood as next‐generation structural and functional materials for a sustainable future,” EcoMat, vol. 4, No. 1, p. e12154, (2022). [CrossRef] [Google Scholar]
  12. J. Song et al., “Processing bulk natural wood into a high-performance structural material,” Nature, vol. 554, No. 7691, pp. 224–228, (2018). [Google Scholar]
  13. Nindyawati, Karyadi, M. M. A. Pratama, and R. Sulaksitaningrum, “Experimental study on the tensile strength of cold-formed steel C-section on varying connection types,” in AIP Conference Proceedings, (2022), vol. 2489, No. 1, p. 30038. [Google Scholar]
  14. R. L. Barnett, “Optimum Weight Stiffness Structural Design.” Illinois Institute of Technology, (2021). [Google Scholar]
  15. A. Insan, I. Waluyohadi, and E. Arifi, Desain Struktur Kayu dengan Metode LRFD. Universitas Brawijaya Press, (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.