Open Access
MATEC Web Conf.
Volume 372, 2022
International Conference on Science and Technology 2022 “Advancing Science and Technology Innovation on Post Pandemic Through Society 5.0” (ICST-2022)
Article Number 08003
Number of page(s) 6
Section Process Engineering and Manufacture
Published online 08 December 2022
  1. A. D. Fatikasari, “Analisa Tingkat Kerusakan Jalan Menggunakan Metode PCI Untuk Mengevaluasi Kondisi Jalan di Raya Cangkring, Kecamatan Krembung, Kabupaten Sidoarjo,” vol. 6, No. 2, (2021). [Google Scholar]
  2. G. Sumarda, I. M. Kariyana, and I. S. Subekti, “Perencanaan Tebal Lapis Tambah (Overlay) Runway Eksisting Bandara Internasional Lombok,” VASTUWIDYA, vol. 5, No. 1, pp. 22– 31, (2022). [Google Scholar]
  3. G. White and R. Balestra, “Comparing rigid and flexible airport pavement thicknesses designed by different methods,” Airf. Highw. Pavements 2019 Innov. Sustain. Highw. Airf. Pavement Technol. – Sel. Pap. from Int. Airf. Highw. Pavements Conf. 2019, no. Aaa 2017, pp. 290– 301, (2019), DOI:10.1061/9780784482476.029. [Google Scholar]
  4. Kementerian Perhubungan Direktoral Jendral Perhubungan Udara, “Pedoman Perhitungan PCN (Pavement Classification Number) Perkerasan Prasarana Bandar Udara,” KP 93 Tahun (2015), no. 93, p. 121, 2015. [Google Scholar]
  5. M. D. W. Ardana and I. M. A. Ariawan, “The Significance of concrete slab flexural strength inference variation based on its compression strength characteristics in apron pavement analysis and design,” in MATEC Web of Conferences 276, 2019, pp. 1–8, DOI:10.54367/jrkms.v3i1.698. [Google Scholar]
  6. U.S. Department of Transportation Federal Aviation Administration, “Standardized Method of Reporting Airport Pavement Strength – PCN AC 150/5335–5 C,” Federal Aviation Administration. 2014. [Google Scholar]
  7. M. Prussi and L. Lonza, “Passenger Aviation and High Speed Rail: A Comparison of Emissions Profiles on Selected European Routes,” J. Adv. Transp., pp. 1–10, (2018), DOI:10.1155/2018/6205714. [Google Scholar]
  8. U. S. D. of T. F. A. Administration, “Standard Specifications for Construction of Airports,” Federal Aviation Administration. (2018), [Online]. Available: [Google Scholar]
  9. A. S. B. Bhalla, A. A. Vankar2, and L. B. Zala, “Runway Pavement Design of a proposed Airport with the use of FAARFIELD Software,” Int. J. Sci. Mod. Eng., pp. 44–49, (2013), DOI:10.13140/RG.2.2.31822.28488. [Google Scholar]
  10. R. D. Feranu, S. Sukirman, and P. K. Jaya, “Perencanaan Tebal Perkerasan Lentur Landas Pacu Bandar Udara Soekarno-Hatta Menggunakan Software FAARFIELD dan COMFAA,” in Proceedings of the 19th International Symposium of FSTPT, (2016), no. October, pp. 913–922. [Google Scholar]
  11. G. White, “Difference between Pavement Thickness Design and Pavement Life Prediction for Rigid Aircraft Pavements,” Designs, vol. 6, No. 1, (2022), DOI:10.3390/designs6010012. [CrossRef] [Google Scholar]
  12. A. Mohamady Abdallah Wahba, “ICAO Overloading Practice versus Airport Pavement Design Life Using FAARFIELD 1.3 and COMFAA 2.0, 3.0,” Am. J. Civ. Eng. Archit., vol. 5, No. 2, pp. 57–65, (2017), DOI:10.12691/ajcea-5-2-5. [Google Scholar]
  13. A. Loizos, A. Armeni, and C. Plati, “Evaluation of Airfield Pavements Using FAARFIELD,” Airf. Highw. Pavements 2017 Airf. Pavement Technol. Saf. – Proc. Int. Conf. Highw. Pavements Airf. Technol. (2017), vol. 2017- Augus, pp. 82–91, 2017, DOI:10.1061/9780784480953.008. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.