Open Access
Issue
MATEC Web Conf.
Volume 372, 2022
International Conference on Science and Technology 2022 “Advancing Science and Technology Innovation on Post Pandemic Through Society 5.0” (ICST-2022)
Article Number 05007
Number of page(s) 4
Section Energy and Environmental Science
DOI https://doi.org/10.1051/matecconf/202237205007
Published online 08 December 2022
  1. Yixin Zhang, John S. Richardson And Junjiro N. Negishi, Detritus processing, ecosystem engineering and benthic diversity: a test of predator– omnivore interference, Journal of Animal Ecology 2004, 73, 756– 766, (2004). [Google Scholar]
  2. Moore, J.C. & de Ruiter, P.C. Invertebrates in detrital food webs along gradients of productivity. In: Invertebrates as Webmasters in Ecosystems (eds Coleman, D.C. & Hendrix, P.F.). CABI Publishing, Oxford, UK, pp. 161–175. (2000). [CrossRef] [Google Scholar]
  3. Moore, J.C. & Hunt, H.W. Resource compartmentation and the stability of real ecosystems. Nature, 333, 261–63, (1988). [Google Scholar]
  4. Zou, K., E. Thebault, G. Lacroix & S. Barot. Interactions between the green and brown food web determine ecosystem functioning. Functional Ecology, 30(8): 1454–1465. doi:10.1111/1365-2435.12626, (2016). [CrossRef] [Google Scholar]
  5. Janssen, A., Faraji, F., van der Hammen, T., Magalhães, S., Sabelis, M.W.: Interspecific infanticide deters predators. Ecol. Lett. 5, 490–494 (2002). [CrossRef] [Google Scholar]
  6. Verhulst, F., Nonlinear Differential Equations and Dynamical Systems, SpringerVerlag, Berlin Heidelberg, (1996). [Google Scholar]
  7. Moore, J.C., de Ruiter, P.C. & Hunt, H.W. The influence of ecosystem productivity on food web stability. Science, 261, 906– 908. (1993). [Google Scholar]
  8. Neutel, A.M, Roedink, Global stability in detritusbased food chains. J. Theor. Biol, 171, 351– 353. (1995). [Google Scholar]
  9. Moore, J.C., de Ruiter, P.C. et al. Detritus, trophic dynamics, and biodiversity. Ecology Letter, 7, 584–600. (2004). [CrossRef] [Google Scholar]
  10. Chen, J., Zhang, H.: The qualitative analysis of two species predator-prey model with Holling’s type III functional response. Appl. Math. Mech. 7, 77–86 (1986). [CrossRef] [Google Scholar]
  11. Ruan, S., Xiao, D.: Global analysis in a predator-prey system with a nonmonotonic functional response. SIAM J. Appl. Math. 61, 1445–1472 (2001). [Google Scholar]
  12. Zhu, H., Campbell, S.A., Wolkowicz, G.S.K.: Bifurcation analysis of a predator-prey system with a nonmonotonic functional response. SIAM J. Appl. Math. 63, 36–82 (2002). [Google Scholar]
  13. Yang, R., Zhang, C., Zhang, Y.: A delayed diffusive predator-prey system with Michaelis–Menten type predator harvesting. Int. J. Bifurc. Chaos Appl. Sci. Eng. 28, 1850099 (2018). [CrossRef] [Google Scholar]
  14. Z. Zhang, H. Yang, J. Liu, Stability and Hopf bifurcation in a modified Holling-Tanner predatorprey system with multiple delays, Abstr. Appl. Anal. (2012). http://dx.doi.org/10.1155/2012/236484 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.