Open Access
Issue |
MATEC Web Conf.
Volume 372, 2022
International Conference on Science and Technology 2022 “Advancing Science and Technology Innovation on Post Pandemic Through Society 5.0” (ICST-2022)
|
|
---|---|---|
Article Number | 02010 | |
Number of page(s) | 4 | |
Section | Advance Material and Interface | |
DOI | https://doi.org/10.1051/matecconf/202237202010 | |
Published online | 08 December 2022 |
- A. C. Bobel, S. Petisco, J. R. Sarasua, W. Wang, and P. E. McHugh, “Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent,” Cardiovasc. Eng. Technol., vol. 6, no. 4, pp. 519–532, (2015), doi: 10.1007/s13239-015-0235-9. [CrossRef] [Google Scholar]
- A. E. Tontowi, P. Ikra, and W. Siswomihardjo, “Mapping of coronary stent demand of several hospitals in Indonesia and its forecasting,” Proc. 2013 3rd Int. Conf. Instrumentation, Commun. Inf. Technol., Biomed. Eng. Sci. Technol. Improv. Heal. Safety, Environ., ICICI-BME (2013), pp. 436–439, (2013). [CrossRef] [Google Scholar]
- A. Triani and A. E. Tontowi, “Optimasi Parameter Desain Stent Berbahan Baku Cobalt Chromium L605 Berdasarkan Solid Mechanics Aspect Menggunakan Metode Response Surface,” Mech. Ind. Eng., p. 352888, (2017). [Google Scholar]
- D. S. Romadhon and A. E. Tontowi “Optimasi Parameter Desain Stent Berbahan Baku Cobalt- Chromium Alloy L605 Untuk Memperoleh Ketebalan Kurang Dari 70 Mikron Menggunakan Metode Response Surface,” p. 400085, (2020). [Google Scholar]
- I.-H. Bae et al., “Mechanical behavior and in vivo properties of newly designed bare metal stent for enhanced flexibility,” J. Ind. Eng. Chem., vol. 21, pp. 1295–1300, (2015). [Google Scholar]
- Kemenkes RI, “Situasi kesehatan jantung,” Pus. data dan Inf. Kementeri. Kesehat. RI, p. 3, (2014). [Google Scholar]
- L. Petrini, F. Migliavacca, F. Auricchio, and G. Dubini, “Numerical investigation of the intravascular coronary stent flexibility,” J. Biomech., vol. 37, no. 4, pp. 495–501, (2004), doi: 10.1016/j.jbiomech.2003.09.002. [Google Scholar]
- M. De Beule, Finite Element Stent Design (PhD Thesis). (2008). [Google Scholar]
- N. Li, H. Zhang, and H. Ouyang, “Shape optimization of coronary artery stent based on a parametric model,” Finite Elem. Anal. Des., vol. 45, no. 6–7, pp. 468–475, (2009), doi: 10.1016/j.finel.2009.01.001. [Google Scholar]
- R. A. AKBARI, “Analisis Pengaruh Suhu Terhadap Kekuatan Surface Metal Seal (SMS) Packoff pada Unitized Wellhead Menggunakan Metode Elemen Hingga,” Universitas Gadjah Mada, (2014). [Google Scholar]
- R. Budynas and K. Nisbett, Loose Leaf Version for Shigley’s Mechanical Engineering Design 9th Edition. McGraw-Hill Education, (2012). [Google Scholar]
- S. B, “Optimasi Desain Stent Pla Menggunakan Metode Response Surface (Rsm) Untuk Memperolah Fleksibilitas Terbaik,” J. Teknosains, vol. 8, no. 1, p. 48, (2019). [CrossRef] [Google Scholar]
- S. Moaveni, Finite Element Analysis Theory and Application with ANSYS, vol. 2416514. (2007). [Google Scholar]
- W. Wu, D. Z. Yang, M. Qi, and W. Q. Wang, “An FEA method to study flexibility of expanded coronary stents,” J. Mater. Process. Technol., vol. 184, no. 1–3, pp. 447–450, (2007), doi: 10.1016/j.jmatprotec.2006.12.010. [Google Scholar]
- X. Lei, T. Liu, J. Chen, B. Miao, and W. Zeng, “Microstructure and mechanical properties of magnesium alloy AZ31 processed by compound channel extrusion,” Mater. Trans., vol. 52, no. 6, pp. 1082–1087, (2011), doi: 10.2320/matertrans.MC201004. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.