Open Access
Issue |
MATEC Web Conf.
Volume 370, 2022
2022 RAPDASA-RobMech-PRASA-CoSAAMI Conference - Digital Technology in Product Development - The 23rd Annual International RAPDASA Conference joined by RobMech, PRASA and CoSAAMI
|
|
---|---|---|
Article Number | 06008 | |
Number of page(s) | 9 | |
Section | Process Development | |
DOI | https://doi.org/10.1051/matecconf/202237006008 | |
Published online | 01 December 2022 |
- J. Pang, D.J. Blackwood. Corrosion of titanium alloys in high temperature near anaerobic seawater. Corrosion Science, 105, 17–24 (2016). [CrossRef] [Google Scholar]
- I.V. Gorynin. Titanium alloys for marine application. Materials Science and Engineering: A, 263(2), 112–116 (1999.). [Google Scholar]
- L.K. Wu, W.Y. Wu, J.L. Song, G.Y. Hou, H.Z. Cao, Y.P. Tang, G.Q. Zheng. Enhanced high temperature oxidation resistance for γ-TiAl alloy with electrodeposited SiO2 film. Corrosion Science, 140, 388–401 (2018). [CrossRef] [Google Scholar]
- Y. Garip, O. Ozdemir. Comparative study of the oxidation and hot corrosion behaviors of TiAl-Cr intermetallic alloy produced by electric current activated sintering. Journal of Alloys and Compounds, 780, 364–377 (2019). [CrossRef] [Google Scholar]
- W.X. Hua. Review of Alloy and Process Development of Ti-Al Alloys [J]. Intermetallics, 14(1), 114–1 (2006). [CrossRef] [Google Scholar]
- L.R. Kanyane, A.P. Popoola,S. Pityana, M. Tlotleng. Heat-treatment effect on anti-corrosion behaviour and tribological properties of LENS in-situ synthesized titanium aluminide. International Journal of Lightweight Materials and Manufacture, 5(2), 153–161 (2022). [CrossRef] [Google Scholar]
- Z. Tang, F. Wang, W. Wu. Effect of a sputtered TiAlCr coating on hot corrosion resistance of gamma-TiAl. Intermetallics, 7(11), 1271–1274 (1999). [CrossRef] [Google Scholar]
- M. Mitoraj-Królikowska, E. Godlewska. Hot corrosion behaviour of (γ+ α2)-Ti-46Al-8Nb (at.%) and α-Ti-6Al-1Mn (at.%) alloys. Corrosion Science, 115,18–29 (2017). [CrossRef] [Google Scholar]
- Z. Tang, F. Wang, W. Wu. Hot-corrosion behavior of TiAl-base intermetallics in molten salts. Oxidation of Metals, 51(3), 235–250 (1999). [CrossRef] [Google Scholar]
- N.A. Nochovnaya, P.V. Panin, A.S. Kochetkov, K.A. Bokov. Modern refractory alloys based on titanium gamma-aluminide: Prospects of development and application. Metal Science and Heat Treatment, 56(7), 364–367 (2014). [CrossRef] [Google Scholar]
- H. Clemens, A. Bartels, S. Bystrzanowski, H. Chladil, H. Leitner, G. Dehm, R.Gerling, F.P. Schimansky. Grain refinement in γ-TiAl-based alloys by solid state phase transformations. Intermetallics, 14(12), 1380–1385 (2006). [CrossRef] [Google Scholar]
- H. Saage, A.J. Huang, D. Hu, M.H. Loretto, X. Wu. Microstructures and tensile properties of massively transformed and aged Ti46Al8Nb and Ti46Al8Ta alloys. Intermetallics, 17(1–2), 32–38 (2009). [CrossRef] [Google Scholar]
- D. Hu, A.J. Huang, X. Wu, X. On the massive phase transformation regime in TiAl alloys: The alloying effect on massive/lamellar competition. Intermetallics, 15(3), 327–332 (2007). [Google Scholar]
- M. Bünck, T. Stoyanov, J. Schievenbusch, H. Michels, A. Gußfeld. Titanium aluminide casting technology development. JOM, 69(12), 2565–2570 (2017). [CrossRef] [Google Scholar]
- J. Campbell. Complete casting handbook: metal casting processes, metallurgy, techniques and design. Butterworth-Heinemann, 2015. [Google Scholar]
- K. Kothari, R. Radhakrishnan, N.M. Wereley, T.S. Sudarshan. Microstructure and mechanical properties of consolidated gamma titanium aluminides. Powder metallurgy, 50(1), 21–27 (2007). [CrossRef] [Google Scholar]
- N.M. Mathabathe, A.S. Bolokang, G. Govender, C.W. Siyasiya, R.J. Mostert. Cold-pressing and vacuum arc melting of γ-TiAl-based alloys. Advanced Powder Technology, 30(12), 2925–2939 (2019). [CrossRef] [Google Scholar]
- Z.Z. Fang, J.D. Paramore, P. Sun, K.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, M. Free. Powder metallurgy of titanium–past, present, and future. International Materials Reviews, 63(7), 407–459 (2018). [CrossRef] [Google Scholar]
- S. Fager Franzén, J. Karlsson. Titanium Aluminide Manufactured by Electron Beam Melting (Master’s thesis), 2010. [Google Scholar]
- X.J. Jiang, Y.Y. Zhang, N. Yang, S.Q Wang, Q.X. Ran. The effect of 0.3 wt% oxygen on mechanical properties of a TiZrAl alloy prepared by vacuum arc melting. Vacuum, 175, 109248 (2020). [CrossRef] [Google Scholar]
- Y. Mishin, C. Herzig. Diffusion in the Ti–Al system. Acta materialia, 48(3), 589–623 (2000). [CrossRef] [Google Scholar]
- H. Clemens, S. Mayer. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Advanced engineering materials,15(4), 191–215 (2013). [CrossRef] [Google Scholar]
- H. Clemens, A. Bartels, S. Bystrzanowski, H. Chladil, H. Leitner, G. Dehm, R. Gerling, and F.P. Schimansky. Grain refinement in γ-TiAl-based alloys by solid state phase transformations. Intermetallics, 14(12), 1380–1385 (2006). [CrossRef] [Google Scholar]
- A. Shabani, M.R. Toroghinejad, A. Shafyei, R.E. Logé. Evaluation of the mechanical properties of the heat treated FeCrCuMnNi high entropy alloy. Materials Chemistry and Physics, 221, 68–77 (2019). [CrossRef] [Google Scholar]
- A.H. Seikh, A. Mohammad, E.S.M. Sherif, A. Al-Ahmari. Corrosion behavior in 3.5% NaCl solutions of γ-TiAl processed by electron beam melting process. Metals, 5(4), 2289–2302 (2015). [CrossRef] [Google Scholar]
- Y. Wang, Z. Xu, A. Zhang. Electrochemical dissolution behavior of Ti-45Al-2Mn-2Nb+ 0.8 vol% TiB2 XD alloy in NaCl and NaNO3 solutions. Corrosion Science, 157, 357–369 (2019). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.