Open Access
Issue
MATEC Web Conf.
Volume 370, 2022
2022 RAPDASA-RobMech-PRASA-CoSAAMI Conference - Digital Technology in Product Development - The 23rd Annual International RAPDASA Conference joined by RobMech, PRASA and CoSAAMI
Article Number 07001
Number of page(s) 15
Section Pattern Recognition
DOI https://doi.org/10.1051/matecconf/202237007001
Published online 01 December 2022
  1. Eyewitness News, https://ewn.co.za/2022/02/05/regular-floods-have-devastating-effect-on-livelihoods-centurion-residents#:~:text=livelihoods%20%3A%20Centurion%20residents-,Regular%20floods%20have%20devastating%20effect%20on%20livelihoods%20%3A%20Centurion%20residents,Hennops%20River%20overflowing%20in%20Centurion. Last accessed on 19–09–2022. [Google Scholar]
  2. N.N. Kourgialas, G.P. Karatzas, Flood management and a GIS modelling method to assess flood-hazard areas—a case study, Hydrological Sciences Journal–Journal des Sciences Hydrologiques, 56(2), pp.212–225 (2011) [CrossRef] [Google Scholar]
  3. C.H. Green, D.J. Parker, S.M. Tunstall, Assessment of flood control and management options, WCD Thematic reviews. World Commission on Dams Secretariat, South Africa (2000) [Google Scholar]
  4. S. Cohen, G.R Brakenridge, A. Kettner, B. Bates, J. Nelson, R. McDonald, Y.F. Huang, D. Munasinghe, J. Zhang, Estimating floodwater depths from flood inundation maps and topography, JAWRA Journal of the American Water Resources Association, 54(4), pp.847–858 (2018) [CrossRef] [Google Scholar]
  5. K. Karamvasis, V. Karathanassi, FLOMPY: An Open-Source Toolbox for Floodwater Mapping Using Sentinel-1 Intensity Time Series, Water, 13, 2943 (2021). Available at https://github.com/kleok/FLOMPY. [CrossRef] [Google Scholar]
  6. U.C Nkwunonwo, M. Whitworth, B. Baily, A review of the current status of flood modelling for urban flood risk management in the developing countries, Scientific African 7, e00269 (2020) [Google Scholar]
  7. V.M. Cvetkovic, J. Martinović, Innovative solutions for flood risk management, International Journal of Disaster Risk Management, 2(2), pp.71–100 (2020) [CrossRef] [Google Scholar]
  8. J. Chen, G. Huang, W. Chen, Towards better flood risk management: Assessing flood risk and investigating the potential mechanism based on machine learning models, Journal of environmental management, 293, p.112810 (2021) [CrossRef] [Google Scholar]
  9. A. Mosavi, P. Ozturk, K.W. Chau, Flood prediction using machine learning models: Literature review, Water, 10(11), p.1536 (2018) [CrossRef] [Google Scholar]
  10. S. Dazzi, R. Vacondio, P. Mignosa, Flood Stage Forecasting Using Machine-Learning Methods: A Case Study on the Parma River (Italy), Water, 13, 1612 (2021) [CrossRef] [Google Scholar]
  11. Y. Wang, Z. Fang, H. Hong, L. Peng, Flood susceptibility mapping using convolutional neural network frameworks, Journal of Hydrology, 582, p.124482 (2020) [CrossRef] [Google Scholar]
  12. Y. Luo, Z. Dong, X. Guan, Y. Liu, Flood risk analysis of different climatic phenomena during flood season based on copula-based Bayesian network method: a case study of Taihu Basin, China, Water. 2019 Aug;11(8):1534 (2019) [CrossRef] [Google Scholar]
  13. S. Huang, H. Wang, Y. Xu, J. She, J. Huang, Key Disaster-Causing Factors Chains on Urban Flood Risk Based on Bayesian Network, Land, 2021 Feb;10(2):210 (2021) [CrossRef] [Google Scholar]
  14. Z. Sobhaniyeh, M.H. Niksokhan, B. Omidvar, S. Gaskin, Robust Flood Risk Management Strategies Through Bayesian Estimation and Multi-objective Optimization, International Journal of Environmental Research, 15(6), pp.1057–1070 (2021) [CrossRef] [Google Scholar]
  15. S. Balbi, F. Villa, V. Mojtahed, K.T. Hegetschweiler, C. Giupponi, A spatial Bayesian network model to assess the benefits of early warning for urban flood risk to people, Natural Hazards and Earth System Sciences, 16(6), pp 1323–1337 (2016) [CrossRef] [Google Scholar]
  16. H. Joo, C. Choi, J. Kim, D. Kim, S. Kim, H.S. Kim, A Bayesian network-based integrated for flood risk assessment (InFRA), Sustainability, 11(13), p.3733 (2019) [CrossRef] [Google Scholar]
  17. F.S. Hosseini, B. Choubin, A. Mosavi, N. Nabipour, S. Shamshirband, H. Darabi, A.T. Haghigh, Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: application of the simulated annealing feature selection method, Science of the total environment, 1 Apr 2020, 711:135161 (2020) [CrossRef] [Google Scholar]
  18. Z. Els, Data availability and requirements for flood hazard mapping in South Africa, Doctoral dissertation, Stellenbosch University, South Africa (2011) [Google Scholar]
  19. GreenBook (2021) Available at https://greenbook.co.za/. [Google Scholar]
  20. H.S. Koen, Predictive Policing in an Endangered Species Context: Combating Rhino Poaching in the Kruger National Park. Doctoral Thesis, University of Pretoria, South Africa (2017) [Google Scholar]
  21. aGrUM/pyAgrum (2018) Available at https://pyagrum.readthedocs.io/en/1.1.0/. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.