Open Access
Issue
MATEC Web Conf.
Volume 370, 2022
2022 RAPDASA-RobMech-PRASA-CoSAAMI Conference - Digital Technology in Product Development - The 23rd Annual International RAPDASA Conference joined by RobMech, PRASA and CoSAAMI
Article Number 03004
Number of page(s) 13
Section Material Development
DOI https://doi.org/10.1051/matecconf/202237003004
Published online 01 December 2022
  1. A. Wadood and Y. Yamabe-Mitarai, “TiPt-Co and TiPt-Ru high temperature shape memory alloys,” Mater. Sci. Eng. A, vol. 601, pp.106–110, 2014, doi: 10.1016/j.msea.2014.02.029. [CrossRef] [Google Scholar]
  2. T. Kawamura et al., “Effects of ternary additions on martensitic transformation of TiAu,” Mater. Sci. Eng. A, vol. 438–440, no. SPEC. ISS., pp.383–386, 2006, doi: 10.1016/j.msea.2006.01.123. [CrossRef] [Google Scholar]
  3. C. Declairieux, A. Denquin, P. Ochin, R. Portier, and P. Vermaut, “On the potential of Ti50Au50 compound as a high temperature shape memory alloy,” Intermetallics, vol. 19, no. 10, pp.1461–1465, 2011, doi: 10.1016/j.intermet.2011.05.028. [CrossRef] [Google Scholar]
  4. J. Ma, I. Karaman, and R. D. Noebe, “High temperature shape memory alloys,” Int. Mater. Rev., vol. 55, no. 5, pp.257–315, Sep. 2010, doi: 10.1179/095066010X12646898728363. [CrossRef] [Google Scholar]
  5. P. Daswa, S. Chikosha, and C. W. Siyasiya, “Shape memory properties and transformation temperature of Ti50-XVXPt50 alloy,” Intermetallics, vol. 133, no. March, p. 107154, Jun. 2021, doi: 10.1016/j.intermet.2021.107154. [CrossRef] [Google Scholar]
  6. R. Arockiakumar, M. Takahashi, S. Takahashi, and Y. Yamabe-Mitarai, “Microstructure, mechanical and shape memory properties of Ti-55Pd-5x (x=Zr, Hf, V, Nb) alloys,” Mater. Sci. Eng. A, vol. 585, pp.86–93, 2013, doi: 10.1016/j.msea.2013.06.087. [CrossRef] [Google Scholar]
  7. A. Wadood, M. Takahashi, S. Takahashi, H. Hosoda, and Y. Yamabe- Mitarai, “High-temperature mechanical and shape memory properties of TiPt-Zr and TiPt-Ru alloys,” Mater. Sci. Eng. A, vol. 564, pp.34–41, 2013, doi: 10.1016/j.msea.2012.11.069. [CrossRef] [Google Scholar]
  8. Y. Yamabe-Mitarai, T. Hara, S. Miura, and H. Hosoda, “Phase transformation and shape memory effect of Ti(Pt, Ir),” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 43, no. 8, pp.2901–2911, 2012, doi: 10.1007/s11661-011-0954-y. [CrossRef] [Google Scholar]
  9. Y. Yamabe-Mitarai, T. Hara, T. Kitashima, S. Miura, and H. Hosoda, “Composition dependence of phase transformation behavior and shape memory effect of Ti(Pt, Ir),” J. Alloys Compd., vol. 577, no. SUPPL. 1, pp. S399–S403, 2013, doi: 10.1016/j.jallcom.2012.02.136. [CrossRef] [Google Scholar]
  10. Y. Yamabe-Mitarai et al., “Ti(Pt, Pd, Au) based High Temperature Shape Memory Alloys,” Mater. Today Proc., vol. 2, pp. S517–S522, 2015, doi: 10.1016/j.matpr.2015.07.338. [Google Scholar]
  11. O. Benafan, D. J. Gaydosh, R. D. Noebe, S. Qiu, and R. Vaidyanathan, “In Situ Neutron Diffraction Study of NiTi–21Pt High-Temperature Shape Memory Alloys,” Shape Mem. Superelasticity, vol. 2, no. 4, pp.337–346, 2016, doi: 10.1007/s40830-016-0095-7. [CrossRef] [Google Scholar]
  12. L. Kovarik et al., “Structural analysis of a new precipitate phase in high- temperature TiNiPt shape memory alloys,” Acta Mater., vol. 58, no. 14, pp.4660–4673, Aug. 2010, doi: 10.1016/j.actamat.2010.04.039. [CrossRef] [Google Scholar]
  13. O. Karakoc, K. C. Atli, O. Benafan, R. D. Noebe, and I. Karaman, “Actuation fatigue performance of NiTiZr and comparison to NiTiHf high temperature shape memory alloys,” Mater. Sci. Eng. A, vol. 829, no. October 2021, p. 142154, 2022, doi: 10.1016/j.msea.2021.142154. [CrossRef] [Google Scholar]
  14. S. H. Chang, W. P. Kao, K. Y. Hsiao, J. W. Yeh, M. Y. Lu, and C. W. Tsai, “High-temperature shape memory properties of Cu15Ni35Ti25Hf12.5Zr12.5 high-entropy alloy,” J. Mater. Res. Technol., vol. 14, pp.1235–1242, 2021, doi: 10.1016/j.jmrt.2021.07.008. [CrossRef] [Google Scholar]
  15. S. Chikosha, M. L. Mahlatji, R. Modiba, and H. K. Chikwanda, “The effect of vanadium on structure and martensitic transformation temperature of TiPt alloy,” IOP Conf. Ser. Mater. Sci. Eng., vol. 430, no. 1, 2018, doi: 10.1088/1757-899X/430/1/012022. [CrossRef] [Google Scholar]
  16. Y. Zhou et al., “Heat treatment of hot-isostatic-pressed 60NiTi shape memory alloy: Microstructure, phase transformation and mechanical properties,” J. Mater. Sci. Technol., vol. 107, pp.124–135, 2022, doi: 10.1016/j.jmst.2021.10.005. [CrossRef] [Google Scholar]
  17. H. Yu and X. Xiang, “Effect of heat treatment on the transformation behavior and temperature memory effect in TiNiCu wires,” Rare Met., vol. 28, no. 1, pp.63–67, 2009, doi: 10.1007/s12598-009-0012-8. [CrossRef] [Google Scholar]
  18. O. Rios et al., “Characterization of ternary NiTiPt high-temperature shape memory alloys,” Smart Struct. Mater. 2005 Act. Mater. Behav. Mech., vol. 5761, no. May 2005, p. 376, 2005, doi: 10.1117/12.599608. [Google Scholar]
  19. D. Koodalil, “Coring: How to properly remove this damaging alloy defect,” Corrosionpedia, 2020. www.corrosionpedia.com/coring-how-to-remove-this-damaging-defect/2/6955 (accessed Jun. 28, 2022). [Google Scholar]
  20. J. L. Fattebert, M. E. Wickett, and P. E. A. Turchi, “Phase-field modeling of coring during solidification of Au-Ni alloy using quaternions and CALPHAD input,” Acta Mater., vol. 62, no. 1, pp.89–104, 2014, doi: 10.1016/j.actamat.2013.09.036. [CrossRef] [Google Scholar]
  21. J. Clark, “Vanadium,” 2015. https://www.chemguide.co.uk/inorganic/transition/vanadium.html (accessed Jun. 30, 2022). [Google Scholar]
  22. D. T. Metals, “Facts about nickel,” 2022. https://sites.dartmouth.edu/toxmetal/more-metals/nickel-hidden-in-plain-sight/the-facts-onnickel/#:~:text=Becausenickeldoesnoteasilyoxidize%2Corrust%2C,themetaltheyformauniform%2Cthincoating. (accessed Jun. 30, 2022). [Google Scholar]
  23. P. Daswa, P. C. W. Siyasiya, M. Engineering, and I. Technology, “The effect of ternary alloying on the shape memory properties of titanium- platinum alloys Preface :,” no. August, 2020. [Google Scholar]
  24. A. Evirgen, I. Karaman, R. Santamarta, J. Pons, C. Hayrettin, and R. D. Noebe, “Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys,” Acta Mater., vol. 121, pp.374–383, Dec. 2016, doi: 10.1016/j.actamat.2016.08.065. [CrossRef] [Google Scholar]
  25. T. Biggs, M. B. Cortie, M. J. Witcomb, and L. A. Cornish, “Martensitic transformations, microstructure, and mechanical workability of TiPt,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 32, no. 8, pp.1881–1886, 2001, doi: 10.1007/s11661-001-0001-5. [CrossRef] [Google Scholar]
  26. J. Tahar. Al-Haidary, A. M. Mustafa, and A. A. Hamza, “Effect of Heat Treatment of Cu-Al-Be Shape Memory Alloy on Microstructure, Shape Memory Effect and Hardness,” J. Mater. Sci. Eng., vol. 06, no. 06, pp.1–7, 2017, doi: 10.4172/2169-0022.1000398. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.