Open Access
Issue
MATEC Web Conf.
Volume 370, 2022
2022 RAPDASA-RobMech-PRASA-CoSAAMI Conference - Digital Technology in Product Development - The 23rd Annual International RAPDASA Conference joined by RobMech, PRASA and CoSAAMI
Article Number 03003
Number of page(s) 9
Section Material Development
DOI https://doi.org/10.1051/matecconf/202237003003
Published online 01 December 2022
  1. J. Mola, I. Jung, J. Park, D. Chae and B. C. d. Cooman, Metallurgical and Materials Transactions, vol. 43, pp.228–244, 2012. [CrossRef] [Google Scholar]
  2. M. Maumela, W. E. Stumpf and C. W. Siyasiya, “The effect of cast structures on texture and mechanical properties of AISI 433 ferritic stainless steel,” IOP Conference Series: Materials Science and Engineering, vol. 655, pp.1–7, 2019. [Google Scholar]
  3. J. I. Hamada, Y. Matsumoto, F. Fudanoki and S. Maeda, “Effect of initial solidified structure on ridging phenomenon and texture in type 430 ferritic stainless steel sheets,” Iron and Steel Intstitute of Japan International, vol. 43, pp.1989–1998, 2003. [CrossRef] [Google Scholar]
  4. H. J. Shin, J. K. An, S. H. Park and D. N. Lee, “The effect of texture on ridging of ferritic stainless steel,” Acta Materialia, vol. 51, pp.4693–4706, 2003. [CrossRef] [Google Scholar]
  5. P. D. Wu, H. Jin, Y. Shi and D. J. Lloyd, “Analysis of Ridging in ferritic stainless steel sheet,” Materials Science & Engineering A, vol. 423, pp.300–305, 2006. [CrossRef] [Google Scholar]
  6. S. Lekakh, J. Ge, V. Richards, R. O’Malley and J. Terbush, “Optimization of Melt Treatment for Austenitic Steel Grain Refinement,” Metallurgical and Materials Transaction B, vol. 48, pp.406–419, 2017. [CrossRef] [Google Scholar]
  7. Y. Hou and G. Cheng, “Effect of nucleus density and dendritic growth influenced by Ti and Nb on solidification structure of Fe-18 pct Cr ferritic stainless steel,” Metallurgical and Materials Transactions B, vol. 50, pp.1322–1333, 2019. [CrossRef] [Google Scholar]
  8. Y. Shan, X. Luo, X. Hu and S. Liu, “Mechanism of solidification structure improvement of ultra pure 17 wt% Cr ferritic stainless steel by Ti, Nb addition,” Journal of Materials Science & Technology, vol. 27, pp.352–358, 2011. [CrossRef] [Google Scholar]
  9. X. Zhang, L. Fan, Y. Xu, J. Li, X. Xiao and L. Jiang, “Effect of aluminum on microstructure, mechanical properties and pitting corrosion resistance of ultra-pure 429 ferritic stainless steels,” Materials & Design, vol. 65, pp.682–689, 2014. [Google Scholar]
  10. C. Wang, H. Gao, Y. Dai, J. Wang and B. Sun, “Solidification structure refining of 409L ferritic stainless steel using Fe-Ti-N master alloy,” Metals and Materials International, vol. 18, pp.47–53, 2012. [CrossRef] [Google Scholar]
  11. H. Fujimura, S. Tsuge, Y. komizo and T. Nishizawa, “Effect of oxide composition on solidification structure of ti added ferritic stainless steel,” Tetsuo-To-Hagane, vol. 87, pp.707–712, 2001. [CrossRef] [Google Scholar]
  12. X. Shi and L. Chang, “Equiaxed solidification of 430 ferritic stainless steels nucleation on core-containing Ti.,” High Temperature Materials Processes, vol. 37, pp.954–956, 2018. [Google Scholar]
  13. K. Kimura, S. Fukumoto, G. I. Shigesato and A. Takahashi, “Effect of Mg addition on equiaxed grain formation in ferritic stainless steels,” Iron and Steel Institute of Japan (ISIJ) International, vol. 53, pp.2167–2175, 2013. [CrossRef] [Google Scholar]
  14. G. N. Heintze and R. McPherson, “Solidification control of submerged arc weld by inoculation with Ti,” Weld Journal: Welding Research Supplement, vol. 65, pp. 71s- 82s, 1986. [Google Scholar]
  15. J. C. Villafuerte, E. Pardo and H. W. Kerr, “The effect of alloy composition and welding conditions on columnar-equiaxed transitions in ferritic stainless steel gas- tungsten arc welds,” Metallurgical Transactions A, vol. 21, p. 2009, 1990. [Google Scholar]
  16. J. H. Park, J. S. Park and C. Lee, “Formation of equiaxed crystal by complex inclusions during solidification of advanced high strength steel,” in 8th pacific Rim International Congress on Advanced Materials Processing,, PRICM-8, hilton Waikiloa Village Hawaii, 2013. [Google Scholar]
  17. J. S. Park, C. Lee and J. H. Park, “Effect of complex inclusion particles on solidification structure of Fe-Ni-Mn-Mo Alloy,” Metallurgical and Materials Transaction b, vol. 43, pp.1550–1564, 2012. [CrossRef] [Google Scholar]
  18. W. Mu, P. G. Jonsson and K. Nakajima, “Prediction of intergranular ferritie nucleation from TiO, TiN and VN inclusions,” Journal of Materials Science, vol. 51, pp.2168–2180, 2016. [CrossRef] [Google Scholar]
  19. K. F. A. Hajeri, C. I. Garcia, m. Hua and A. J. Deardo, “Particle-stimulated nucleation of ferrite in heavy steel sections,” Iron and Steel Institute of Japan (ISIJ) International, vol. 46, pp.1233–1240, 2006. [CrossRef] [Google Scholar]
  20. O. Hiroki and S. Hideaki, “Precipitation Dispersion Control of MnS by Deoxidification Products of ZrO2, Al2O3, MgO and MnO-SiO2 particles in Fe- 10mass%Ni alloy,” Iron and Steel Institute (ISIJ) International, vol. 46, pp.480–489, 2006. [CrossRef] [Google Scholar]
  21. Q. Zeng and S. Xu, “Thermodynamics and characteristics of heterogeneous nucleation on fractal surfaces,” Journal of Physical Chemistry C, vol. 119, pp.27426–27433, 2015. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.