Issue |
MATEC Web of Conferences
Volume 33, 2015
ESOMAT 2015 – 10th European Symposium on Martensitic Transformations
|
|
---|---|---|
Article Number | 03007 | |
Number of page(s) | 6 | |
Section | NiTi-based alloys | |
DOI | https://doi.org/10.1051/matecconf/20153303007 | |
Published online | 07 December 2015 |
Effects of HSHPT on the martensitic transformation behaviour of an NiTi alloy
1 Faculty of Engineering “Dunarea de jos ” University of Galati, Domneasca Street, No. 111, 800201, Galati, Romania
2 Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai - 600 036, India
a Corresponding author: gheorghe.gurau@ugal.ro
High speed high pressure torsion (HSHPT) is a novel severe plastic deformation technique that is used to produce bulk ultrafine-grained nickel-titanium shape memory alloys. In this study, the effect of grain refinement on phase transformation was investigated in a near equiatomic NiTi shape memory alloy subjected to processing by this technique. Phase transformations involving different degrees of deformation and stability of thermally-induced phase transformations were analyzed by differential scanning calorimetry (DSC). The measurements suggest that the martensitic transformation occurred even when the highest degree of deformation was applied. Optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations bring to light that the true strain applied controls the evolution of the microstructure. The results are presented and discussed in detail in this paper.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.