Open Access
Issue |
MATEC Web Conf.
Volume 369, 2022
40th Annual Conference - Meeting of the Departments of Fluid Mechanics and Thermomechanics in the connection with XXIII. International Scientific Conference - The Application of Experimental and Numerical Methods in Fluid Mechanics and Energy (40th. MDFMT & XXIII. AEaNMiFMaE-2022)
|
|
---|---|---|
Article Number | 04003 | |
Number of page(s) | 8 | |
Section | Current Problems in the Energy | |
DOI | https://doi.org/10.1051/matecconf/202236904003 | |
Published online | 04 November 2022 |
- Lugt, H. J. (1983). Vortex flow in nature and technology. Wiley. [Google Scholar]
- Robinson, S. K. (1991). Coherent motion in turbulent boundary layer. Annual Review of Fluid Mechanics, 23, 601–639. [CrossRef] [Google Scholar]
- Hunt, J. C. R., Wray, A. A., Moin, P. (1988). Eddies, streams, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88, 193–208. [Google Scholar]
- Chong, M. S., Perry, A. E., Cantwell, B. J. (1990). A general classification of three-dimensional flow fields. Physics of Fluids A: Fluid Dynamics, 2(5), 765-777. [CrossRef] [Google Scholar]
- Jeong, J., Hussain, F. (1995). On the identification of a vortex. Journal of Fluid Mechanics, 285, 69-94. [CrossRef] [Google Scholar]
- Graftieaux, L., Michard, M., Grosjean, N. (2001). Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Measurement Science and Technology, 12(9), 1422-1429. [CrossRef] [Google Scholar]
- Kolář, V. (2007). Vortex identification: New requirements and limitations. International Journal of Heat and Fluid Flow, 28, 638–652. [CrossRef] [Google Scholar]
- Liu, C, Wang, Y.,Yang, Y., Duan, Z. (2016). New omega vortex identification method. Science China Physics, Mechanics & Astronomy, 59, 684711. [CrossRef] [Google Scholar]
- Monaghan, J. J., Gingold, R. A. (1983). Shock simulation by the particle method SPH. Journal of Computational Physics, 52(2), 374-389. [CrossRef] [Google Scholar]
- Adami, S., Hu, X. Y., Adams, N. A. (2012). A generalized wall boundary condition for smoothed particle hydrodynamics. Journal of Computational Physics, 231(21), 7057-7075. [CrossRef] [Google Scholar]
- Jančík, P., Hyhlík, T. (2019). Forces on vertical walls after dam break using weakly compressible SPH method. AIP Conference Proceedings, 2118(1), 30018. [Google Scholar]
- Liu, G. R., Liu, M. B. (2003). Smoothed particle hydrodynamics - A meshfree particle method. World Scientific. [Google Scholar]
- Chen, Q., Zhong, Q., Qi, M., Wang, X. (2015). Comparison of vortex identification criteria or planar velocity fields in wall turbulence. Phisics of Fluids, 27, 085101. [CrossRef] [Google Scholar]
- Jancík, P., Hyhlík, T. (2021). Finite-time Lyapunov Exponent analysis used on a free-surface flow problem solved by Smoothed Particle Hydrodynamics. 2nd International Conference on Fluid Flow and Thermal Science, 108. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.