Open Access
Issue |
MATEC Web Conf.
Volume 368, 2022
NEWTECH 2022 – The 7th International Conference on Advanced Manufacturing Engineering and Technologies
|
|
---|---|---|
Article Number | 01019 | |
Number of page(s) | 12 | |
Section | Advanced Manufacturing Engineering and Technologies | |
DOI | https://doi.org/10.1051/matecconf/202236801019 | |
Published online | 19 October 2022 |
- Elangovan, M., Sakthivel, N.R., Saravanamurugan, S., Nair, B.B., Sugumaran, V.: Machine learning approach to the prediction of surface roughness using statistical features of vibration signal acquired in turning. In: Procedia Comput. Sci. 50 282–288 (2015). [CrossRef] [Google Scholar]
- Liu, N., Liu, B., Jiang, H., Wu, S., Yang, C., Chen, Y.: Study on vibration and surface roughness in MQCL turning of stainless steel. In: J. Manuf. Process. 65, 343–353 (2021). [CrossRef] [Google Scholar]
- Zhuo, Y., Han, Z., An, D., Jin, H.: Surface topography prediction in peripheral milling of thin-walled parts considering cutting vibration and material removal effect. In: Int. J. Mech. Sci. 211, 106797 (2021). [CrossRef] [Google Scholar]
- Li, S., Li, S., Liu, Z., Vladimirovich, P.A.: Roughness prediction model of milling noisevibration-surface texture multi-dimensional feature fusion for N6 nickel metal. In: J. Manuf. Process. 79, 166–176 (2022). [CrossRef] [Google Scholar]
- Vishnu, V.S., Varghese, K.G., Gurumoorthy, B.: A Data-driven Digital Twin of CNC Machining Processes for Predicting Surface Roughness. In: Procedia CIRP. 104 1065–1070 (2021). [CrossRef] [Google Scholar]
- Liu, L., Zhang, X., Wan, X., Zhou, S., Gao, Z.: Digital twin-driven surface roughness prediction and process parameter adaptive optimization. In: Adv. Eng. Informatics. 51, 101470 (2022). [CrossRef] [Google Scholar]
- Joshi, K., Patil, B.: Prediction of Surface Roughness by Machine Vision using Principal Components based Regression Analysis. In: Procedia Comput. Sci. 167, 382–391 (2020). [CrossRef] [Google Scholar]
- Li, Z., Zhang, Z., Shi, J., Wu, D.: Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. In: Robot. Comput. Integr. Manuf. 57, 488–495 (2019). [CrossRef] [Google Scholar]
- Ulas, M., Aydur, O., Gurgenc, T., Ozel, C.: Surface roughness prediction of machined aluminum alloy with wire electrical discharge machining by different machine learning algorithms. In: J. Mater. Res. Technol. 9 (6), 12512–12524 (2020). [CrossRef] [Google Scholar]
- Sizemore, N.E., Nogueira, M.L., Greis, N.P., Davies, M.A.: Application of machine learning to the prediction of surface roughness in diamond machining. In: Procedia Manuf. 48, 1029–1040 (2020). [CrossRef] [Google Scholar]
- Chen, W., Wang, Q., Hesthaven, J.S., Zhang, C.: Physics-informed machine learning for reduced-order modeling of nonlinear problems. In: J. Comput. Phys. 446, 110666 (2021). [CrossRef] [Google Scholar]
- Wang, H., Li, B., Xuan, F.-Z.: A dimensionally augmented and physics-informed machine learning for quality prediction of additively manufactured high-entropy alloy. In: J. Mater. Process. Technol. 307, 117637 (2022). [CrossRef] [Google Scholar]
- Karkalos, N.E., Galanis, N.I., Markopoulos, A.P.: Surface roughness prediction for the milling of Ti-6Al-4V ELI alloy with the use of statistical and soft computing techniques. In: Meas. J. Int. Meas. Confed. 90, 25–35 (2016). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.