Open Access
MATEC Web Conf.
Volume 368, 2022
NEWTECH 2022 – The 7th International Conference on Advanced Manufacturing Engineering and Technologies
Article Number 01012
Number of page(s) 16
Section Advanced Manufacturing Engineering and Technologies
Published online 19 October 2022
  1. World health statistics 2021: monitoring health for the SDGs, sustainable development goals. Geneva: World Health Organization, ISBN 978-92-4-002705-3, (2021). [Google Scholar]
  2. Píška, M.; Bučková, K. Advanced knee implants for the third millenium. Journal of Material Sciences & Engineering, 2019, Vol. 8/3, 20-21, (2019). [Google Scholar]
  3. Píška, M.; Bučková, K. Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces. Advanced Materials Letters, Vol.10/6, 381-385, (2019) [Google Scholar]
  4. Píška, M.; Bučková, K. On the analysis of Ti6Al4V-ELI powder material, electron beam technology and machining on quality of machined implant surfaces. In European Advanced Material Congress 2018. 1. Stockholm: VBRI Press, 257-258. ISBN: 978-9188252-12-8, (2018). [Google Scholar]
  5. Píška, M.; Bučková, K. On the SLM and EBM of Ti-6Al-4V ELI alloy for advanced knee arthroplasty. CARDIFF: BONE RESEARCH SOCIETY and BRITISH ORTHOPAEDIC RESEARCH SOCIETY, p. 92 (2019). [Google Scholar]
  6. Píška, M.; Bučková, K. On the machining of Ti-6Al-4V ELI alloy made with EBM technology for implants. In UTIS 9th INTERNATIONAL CONGRESS ON MACHINING CONGRESS PROCEEDINGS. 1. Antalya: UTIS Royal Seginus, 242-247, (2018). [Google Scholar]
  7. Píška, M.; Bučková, K. A set for application of joint implant. Czech patent No 309024, (2021). [Google Scholar]
  8. Katti, Kalpana S. Biomaterials in total joint replacement. Colloids and Surfaces B: Biointerfaces. 39(3), 133-142, (2004). [CrossRef] [Google Scholar]
  9. Katti, Kalpana S. Biomaterials in total joint replacement. Colloids and Surfaces B: Biointerfaces, 133-142, (2004). [Google Scholar]
  10. Kurtz, Steven M. Uhmwpe Biomaterials Handbook Ultra-High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices. (3rd Edition). Philadelphia, Drexel University: Elsevier, (2015). [Google Scholar]
  11. Kurtz, Steven M. Uhmwpe Biomaterials Handbook: Ultra High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices. Academic Press, United States, UK, (2009). [Google Scholar]
  12. Malito, Louis G., Arevalo, Sofia, Kozak Adam, Spiegelberg Stephen, Bellare Anuj, Pruitta Lisa: Material properties of ultra-high molecular weight polyethylene: Comparison of tension, compression, nanomechanics and microstructure across clinical formulations. Journal of the Mechanical Behavior of Biomedical Materials Vol.3, July, 9-19, (2018). [Google Scholar]
  13. Zaribaf, Fedra Parnian. Medical-grade ultra-high molecular weight polyethylene: past, current and future. Materials Science and Technology. 34(16), 1940-1953, (2018). [CrossRef] [Google Scholar]
  14. Panayotov, Ivan, Valérie Orti, Frédéric Cuisinier and Jacques Yachouh. Polyetheretherketone (PEEK) for medical applications. Journal of Materials Science: Materials in Medicine. 27(7), 1-11, (2016). [CrossRef] [Google Scholar]
  15. Gorna, Katarzyna and Gogolewski, Sylwester. The effect of gamma radiation on molecular stability and mechanical properties of biodegradable polyurethanes for medical applications. Polymer Degradation and Stability. 79(3), 465-474, (2003). [CrossRef] [Google Scholar]
  16. Mckeen, Laurence W. Fatigue and Tribological Properties of Plastics and Elastomers. (3rd Edition). Elsevier, (2016). [Google Scholar]
  17. Mckeen, Laurence W. Fatigue and Tribological Properties of Plastics and Elastomers. (3rd Edition). Elsevier, (2016). [Google Scholar]
  18. Ducháček, Vratislav. Polymery: výroba, vlastnosti, zpracování, použití (in Czech). Ed. 2, Prague: Publisher: VSCHT ISBN 80-708-0617-6 (2006). [Google Scholar]
  19. ASTM F648-21. Standard Specification for Ultra-High-Molecular-Weight Polyethylene Powder and Fabricated Form for Surgical Implants. 10th Edition. USA: ASTM international, (2021). [Google Scholar]
  20. Axinte, Dragos, Yuebin Guo, Zhirong Liao, Albert Shih, Rachid M’SAOUBI a Naohiko Sugita. Machining of biocompatible materials — Recent advances. CIRP Annals. 68(2), 629-652, (2019). [CrossRef] [Google Scholar]
  21. B. Aldwell, R. Hanley and G.E. O’Donnell. Characterising the Machining of Biomedical Grade Polymers. Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture, 228 (10) pp. 1237-1251, (2014) [CrossRef] [Google Scholar]
  22. Shintoku, Kousuke and Hirohisa Narita. Study on Ball End Milling of Inclined Surfaces for Ultra High Molecular Weight Polyethylene. International Journal of Automation Technology. 11(6), 948-957, (2017). [CrossRef] [Google Scholar]
  23. Wright, Timothy, Clare Rimnac, S. Stulberg, Leslie Mintz, Audrey Tsao, Robert Klein a Charles Mccrae. Wear of Polyethylene in Total Joint Replacements Observations From Retrieved PCA Knee Implants. Clinical Orthopaedics and Related Research, pp. 276, (1992). [Google Scholar]
  24. Mosleh, Mohsen and Nam Suh. Wear Particles of Polyethylene in Biological Systems. Tribology Transactions. 39(4), 843-848, (1996) [CrossRef] [Google Scholar]
  25. Howling, Graeme, Petra Barnett, Joanne Tipper, Martin Stone, John Fisher a Eileen Ingham. Quantitative characterization of polyethylene debris isolated from periprosthetic tissue in early failure knee implants and early and late failure Charnley hip implants. Journal of Biomedical Materials Research. 58(4), 415-420, (2001). [CrossRef] [Google Scholar]
  26. Tulp, Niek J. A. Polyethylene delamination in the PCA total knee. Material analysis in two failed cases. Acta Orthopaedica Scandinavica. 63(3), 263-266, (2009). [Google Scholar]
  27. Evans, D.C. a J.K. Lancaster. The Wear of Polymers. Wear. Elsevier, 85-139, (1979). [CrossRef] [Google Scholar]
  28. Abdelbary, Ahmed. Wear of Polymers and Composites. 1st Edition. Elsevier (2014). [Google Scholar]
  29. Wilches, L.V., J.A. Uribe a A. Toro. Wear of materials used for artificial joints in total hip replacements. Wear. 265(>1-2), 143-149, (2008). [CrossRef] [Google Scholar]
  30. Fisher, J., D. Dowson, H. Hamdzah a H.L. Lee. The effect of sliding velocity on the friction and wear of UHMWPE for use in total artificial joints. Wear. 175(1-2), 219-225 (1994). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.