Open Access
MATEC Web Conf.
Volume 368, 2022
NEWTECH 2022 – The 7th International Conference on Advanced Manufacturing Engineering and Technologies
Article Number 01010
Number of page(s) 10
Section Advanced Manufacturing Engineering and Technologies
Published online 19 October 2022
  1. Yilbas BS. Study of Parameters for CO2 Laser Cutting Process. Materials and Manufacturing Processes. 1998;13:517–536. [Google Scholar]
  2. Chryssolouris G. Laser machining: theory and practice. Springer Science & Business Media. Springer Science & Business Media; 2013. [Google Scholar]
  3. Sudha C, Parameswaran P, Krishnan R, et al. Effect of Laser Shock Processing on the Microstructure of 304(L) Austenitic Stainless Steel. Materials and Manufacturing Processes. 2010;25:956–964. [CrossRef] [Google Scholar]
  4. Rajamani D, Siva Kumar M, Balasubramanian E, Tamilarasan A (2021) Nd: YAG laser cutting of Hastelloy C276: ANFIS modeling and optimization through WOA. Materials and Manufacturing Processes 36:1746–1760. [CrossRef] [Google Scholar]
  5. Kechagias, J.D., Ninikas, K., Stavropoulos, P. et al. A Generalised Approach on Kerf Geometry Prediction during CO2 Laser cut of PMMA Thin Plates using Neural Networks. Lasers Manuf. Mater. Process. 8, 372–393 (2021). [CrossRef] [Google Scholar]
  6. Hu J, Zhu D. Experimental study on the picosecond pulsed laser cutting of carbon fiberreinforced plastics. Journal of Reinforced Plastics and Composites. 2018;37:993–1003. [CrossRef] [Google Scholar]
  7. Moradi M, Karami Moghadam M, Shamsborhan M, et al. Post-Processing of FDM 3DPrinted Polylactic Acid Parts by Laser Beam Cutting. Polymers. 2020;12. [Google Scholar]
  8. Kechagias JD, Ninikas K, Petousis M, et al. An investigation of surface quality characteristics of 3D printed PLA plates cut by CO2 laser using experimental design. Mater Manuf Process. 2021;36:1544–1553. [CrossRef] [Google Scholar]
  9. Kechagias JD, Ninikas K, Petousis M, et al. Laser cutting of 3D printed acrylonitrile butadiene styrene plates for dimensional and surface roughness optimization. The International Journal of Advanced Manufacturing Technology. 2021; [Google Scholar]
  10. Kechagias JD, Fountas NA, Ninikas K, et al. Surface characteristics investigation of 3Dprinted PET-G plates during CO2 laser cutting. Mater Manuf Process. 2021;1–11. [CrossRef] [Google Scholar]
  11. Yue TM, Lau WS. Pulsed Nd:YAG Laser Cutting of Al/Li/SiC Metal Matrix Composites. Materials and Manufacturing Processes. 1996;11:17–29. [CrossRef] [Google Scholar]
  12. Atanasov PA, Baeva MG. CW CO 2 laser cutting of plastics. XI International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference. 1997. [Google Scholar]
  13. Zhou BH, Mahdavian SM. Experimental and theoretical analyses of cutting nonmetallic materials by low power CO2-laser. Journal of Materials Processing Technology. 2004;146:188–192. [CrossRef] [Google Scholar]
  14. Madić M, Petrović G, Petković D, et al (2022) Application of a Robust Decision-Making Rule for Comprehensive Assessment of Laser Cutting Conditions and Performance. Machines 10:153. [CrossRef] [Google Scholar]
  15. Romanowski M, Łukianowicz C, Sutowska M, et al (2021) Assessment of the Technological Quality of X5CRNI18-10 Steel Parts after Laser and Abrasive Water Jet Cutting Using Synthetic Index of Technological Quality. Materials 14:4801. [CrossRef] [Google Scholar]
  16. Bachmann AL, Hanrahan B, Dickey MD, Lazarus N (2022) Self-Folding PCB Kirigami: Rapid Prototyping of 3D Electronics via Laser Cutting and Forming. ACS Applied Materials & Interfaces 14:14774–14782. [Google Scholar]
  17. Najjar IMR, Sadoun AM, Abd Elaziz M, et al (2022) Predicting kerf quality characteristics in laser cutting of basalt fibers reinforced polymer composites using neural network and chimp optimization. Alexandria Engineering Journal 61:11005–11018. [CrossRef] [Google Scholar]
  18. Aumnate C, Pongwisuthiruchte A, Pattananuwat P, et al. Fabrication of ABS/Graphene Oxide Composite Filament for Fused Filament Fabrication (FFF) 3D Printing. Advances in Materials Science and Engineering. 2018;2018:1–9. [CrossRef] [Google Scholar]
  19. Kechagias J, Chaidas D, Vidakis N, et al (2022) Key parameters controlling surface quality and dimensional accuracy: a critical review of FFF process. Mater Manuf Process 37:963–984. [CrossRef] [Google Scholar]
  20. Chaidas D, Kechagias JD (2022) An investigation of PLA/W parts quality fabricated by FFF. Materials and Manufacturing Processes 37:582–590. [Google Scholar]
  21. Tsiolikas A, Mikrou T, Vakouftsi F, et al. Robust design application for optimizing ABS fused filament fabrication process: A case study. IOP Conf Ser: Mater Sci Eng. 2019;564:012021. [CrossRef] [Google Scholar]
  22. Kechagias JD, Zaoutsos SP, Chaidas D, Vidakis N (2022) Multi-parameter optimization of PLA/Coconut wood compound for Fused Filament Fabrication using Robust Design. Int J Adv Manuf Technol 119:4317–4328. [CrossRef] [Google Scholar]
  23. Fountas NA, Kechagias JD, Manolakos DE, Vaxevanidis NM (2020) Single and multiobjective optimization of FDM-based additive manufacturing using metaheuristic algorithms. Procedia Manuf 51:740–747. [CrossRef] [Google Scholar]
  24. Mushtaq RT, Wang Y, Rehman M, et al. State-Of-The-Art and Trends in CO2 Laser Cutting of Polymeric Materials—A Review. Materials. 2020;13. [Google Scholar]
  25. Ayrilmis N, Kariz M, Kwon JH, et al. Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials. The International Journal of Advanced Manufacturing Technology. 2019; 102:2195–2200. [CrossRef] [Google Scholar]
  26. Ecker JV, Haider A, Burzic I, et al. Mechanical properties and water absorption behaviour of PLA and PLA/wood composites prepared by 3D printing and injection moulding. Rapid Prototyping Journal. 2019; 25:672–678. [CrossRef] [Google Scholar]
  27. Chakule RR, Chaudhari SS, Talmale PS (2021) Modelling and optimisation of nanocoolant minimum quantity lubrication process parameters for grinding performance. International Journal of Experimental Design and Process Optimisation 6:333. [CrossRef] [Google Scholar]
  28. Malomo BO, Oladejo KA, Fadairo AA, et al (2019) Multi-objective machining parameter optimisation of aluminium alloy 6063 by the Taguchi-artificial neural network/genetic algorithm approach. International Journal of Experimental Design and Process Optimisation 6:146. [CrossRef] [Google Scholar]
  29. Kusuma AI, Huang Y-M (2022) Product quality prediction in pulsed laser cutting of silicon steel sheet using vibration signals and deep neural network. Journal of Intelligent Manufacturing. [Google Scholar]
  30. Baronti L, Michalek A, Castellani M, et al (2022) Artificial neural network tools for predicting the functional response of ultrafast laser textured/structured surfaces. The International Journal of Advanced Manufacturing Technology 119:3501–3516. [CrossRef] [Google Scholar]
  31. Dhar AR, Gupta D, Roy SS, Lohar AK (2022) Forward and backward modeling of direct metal deposition using metaheuristic algorithms tuned artificial neural network and extreme gradient boost. Progress in Additive Manufacturing. [Google Scholar]
  32. Tani S, Kobayashi Y (2022) Ultrafast laser ablation simulator using deep neural networks. Scientific Reports 12:5837. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.