Open Access
MATEC Web Conf.
Volume 368, 2022
NEWTECH 2022 – The 7th International Conference on Advanced Manufacturing Engineering and Technologies
Article Number 01001
Number of page(s) 10
Section Advanced Manufacturing Engineering and Technologies
Published online 19 October 2022
  1. Assidjo, E., Yao, B., Kisselmina, K., Amané, D.: Modeling of an industrial drying process by artificial neural networks. In: Brazilian Journal of Chemical Engineering, 25(3), 515-522 (2008). [CrossRef] [Google Scholar]
  2. Tafazzoli, E., Saif, M.: Application of combined support vector machines in process fault diagnosis. In: Proceedings of the American Control Conference, pp. 3429-3433, Publisher: IEEE, St. Louis, MO, USA (2009). [Google Scholar]
  3. Deja, M., Siemiatkowski, M.: Machining process sequencing and machine assignment in generative feature-based CAPP for mill-turn parts. In: Journal of Manufacturing Systems 48, 49-62 (2018). [CrossRef] [Google Scholar]
  4. Rehman, N.: Data Mining Techniques Methods Algorithms and Tools. In: International Journal of Computer Science and Mobile Computing 6(7), 227-231 (2017). [Google Scholar]
  5. Denno, P., Dickerson, C., Harding, J.A.: Dynamic Production System Identification for Smart Manufacturing Systems. In: Journal of Manufacturing Systems 48, 1-11 (2018). [Google Scholar]
  6. Corne, R., Nath, C., Mansori, M., Kurfess, T.: Study of spindle power data with neural network for predicting real-time tool wear/breakage during inconel drilling. In: Journal of Manufacturing Systems 43, 287-295 (2017). [CrossRef] [Google Scholar]
  7. Kotsiantis, S.B.: Supervised Machine Learning: A Review of Classification Techniques. In: Informatica 31, 249-268 (2007). [Google Scholar]
  8. Su, W., Bo, M.: Ant Colony Optimization for Manufacturing Resource Scheduling Problem. In: Wang, K., Kovacs, G.L., Wozny, M., Fang, M. (Eds) Knowledge Enterprise: Intelligent Strategies in Product Design, Manufacturing, and Management. IFIP International Federation for Information Processing 207, 863-868, Publisher: Springer, Boston, MA (2006). [Google Scholar]
  9. Song, Y., Huang, J., Zhou, D., Zha, H., Giles, C.L.: IKNN: Informative K-Nearest Neighbor Pattern Classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (Eds) Knowledge Discovery in Databases: PKDD 2007. Lecture Notes in Computer Science, 4702, 248-264, Publisher: Springer, Berlin, Heidelberg (2007). [CrossRef] [Google Scholar]
  10. Bi, Z.M., Wang, L.: Optimization of machining processes from the perspective of energy consumption: A case study. In: Journal of Manufacturing Systems, 31(4), 420-428 (2012). [CrossRef] [Google Scholar]
  11. Rogalewicz, M., Piłacińska, M., Kujawińska, A.: Selection of Data Mining Method for Multidimensional Evaluation of the Manufacturing Process State. In: Management & Production Engineering Review (MPER), vol. 3, no. 2, 27-35 (2012). [Google Scholar]
  12. Sika, R., Ignaszak, Z.: Data acquisition in modeling using neural networks and decision trees. In: Archives of Foundry Engineering 11(2), 113-121 (2011). [Google Scholar]
  13. Feature selection,, last accessed 2022/05/10. [Google Scholar]
  14. Frumusanu, G.R., Afteni, C., Epureanu, A.: Data-driven causal modelling of the manufacturing system. In: Transactions of Famena 45(1), 43-62 (2021). [CrossRef] [Google Scholar]
  15. Afteni, C., Frumusanu, G.R., Epureanu, A.: Method for Holistic Optimization of the Manufacturing Process. In: International Journal of Modeling and Optimization 9(5), 265-270 (2019). [CrossRef] [Google Scholar]
  16. Afteni, C., Frumusanu, G.R., Epureanu, A.: Instance-based comparative assessment with application in manufacturing. In: IOP Conference Series: Materials Science and Engineering 400(042001) (2018). [CrossRef] [Google Scholar]
  17. Decision support system,, last accessed 2022/05/10. [Google Scholar]
  18. Instance-based learning,, last accessed 2022/05/10. [Google Scholar]
  19. Afteni, C.: Holistic optimization of manufacturing process. PhD Thesis, ’Dunarea de Jos’ University of Galati, Series I 4: Industrial Engineering, no. 70 (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.