Open Access
Issue |
MATEC Web Conf.
Volume 367, 2022
21st Conference on Power System Engineering
|
|
---|---|---|
Article Number | 00021 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/matecconf/202236700021 | |
Published online | 14 October 2022 |
- D. Bishoyi, K. Sudhakar, Experimental performance of a direct evaporative cooler in composite climate of India, Energy and Buildings, 153, pp. 190-200 (2017) [CrossRef] [Google Scholar]
- ANSI/ASHRAE standard 55–2010: Thermal Environmental Conditions for Human Occupancy, American Society for Heating, Refrigerating and Air Conditioning Engineers Inc, Tullie Circle, NE, Atlanta (1791) [Google Scholar]
- T. Bottomley, E. Roth, Compendium of human responses to the aerospace environment. 6. Thermal environment. NASA CR-1205(1). NASA Contractor report, United States, NASA (1968) [Google Scholar]
- M. N. Shaharon, J. Jalaludin, Thermal comfort assessment-A study toward workers’ satisfaction in a low energy office building. American Journal of Applied Sciences, 9,7, 1037. (2012). [CrossRef] [Google Scholar]
- Online Interactive Psychrometric Chart. http://www.flycarpet.net/en/psyonline; access: 05.02.2022. [Google Scholar]
- J.R. Camargo, C.D. Ebinuma, S. Cardoso, A mathematical model for direct evaporative cooling air conditioning system, Engenharia Térmica 4, pp. 30–34. (2003) [CrossRef] [Google Scholar]
- J.R. Camargo, C.D. Ebinuma, J.L. Silveira, Experimental performance of a direct evaporative cooler operating during summer in a Brazilian city, Int. J. Refriger. 28, pp. 1124–1132. (2005) [CrossRef] [Google Scholar]
- I. Kovacevic, M. Sourbron, The numerical model for direct evaporative cooler, Appl. Therm. Eng. 113, pp. 8–19. (2017) [CrossRef] [Google Scholar]
- A. Franco, D.L. Valera, A. Pena, Energy efficiency in greenhouse evaporative cooling techniques: cooling boxes versus cellulose pads, Energies 7, pp. 1427–1447. (2014) [CrossRef] [Google Scholar]
- Y.M. Xuan, F. Xiao, X.F. Niu, X. Huang, S.W. Wang, Research and application of evaporative cooling in China: a review (I)−research, Renew. Sustain. Energy Rev. 16, pp. 3535–3546. (2012) [CrossRef] [Google Scholar]
- Y.M. Xuan, F. Xiao, X.F. Niu, X. Huang, S.W. Wang, Research and application of evaporative cooling in China: a review (II) −system and equipment, Renew. Sustain. Energy Rev. 16, pp. 3523–3534. (2012) [CrossRef] [Google Scholar]
- M. M. Rafique, P. Gandhidasan, S. Rehman, L. M. Al-Hadhrami, A review on desiccant based evaporative cooling systems, Renew. Sustain. Energy Rev. 45 pp. 145–159 (2015) [CrossRef] [Google Scholar]
- E. D. Rogdakis, I. P. Koronaki, D. N. Tertipis, Experimental and computational evaluation of a Maisotsenko evaporative cooler at Greek climate, Energy Build. 70 pp. 497–506. (2014) [CrossRef] [Google Scholar]
- J. M. Moran, H. N. Shapiro, D. D. Boettner, M. B. Bailey, Fundamentals of Engineering Thermodynamics. John Wiley & Sons Inc. (8th issue), (2014) [Google Scholar]
- D. Bishoyi, K. Sudhakar, Experimental performance of a direct evaporative cooler in composite climate of India, Energy and Buildings 153 pp. 190-200. (2017) [CrossRef] [Google Scholar]
- H. Caliskan, A. Hepbasli, I. Dincer, V. Maisotsenko, Thermodynamic performance assessment of a novel air cooling cycle: Maisotsenko cycle, I. J. Refrigeration, 34, 4 pp. 980-990, (2011) [Google Scholar]
- R. Heron: Tech Ingredients channel (https://www.youtube.com/c/TechIngredients); access: 07.13.2022. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.