Open Access
MATEC Web Conf.
Volume 364, 2022
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022)
Article Number 05003
Number of page(s) 8
Section Developments in Concrete Material Technology, Assessment and Processing
Published online 30 September 2022
  1. L. Ma, A. P. Pang, Y. Luo, X. Lu, F. Lin, Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii. Microbial Cell Factories. 19(12), 1–12 (2020) [CrossRef] [Google Scholar]
  2. Y. Zhao, Z. Xiao, J. Lv, W. Shen, R. Xu, A Novel Approach to Enhance the Urease Activity of Sporosarcina pasteurii and its Application on Microbial-Induced Calcium Carbonate Precipitation for Sand. Geomicrobiology Journal. 36(9), 819–825 (2019) [CrossRef] [Google Scholar]
  3. F. M. Lapierre, J. Schmid, B. Ederer, N. Ihling, J. Büchs, R. Huber, Revealing nutritional requirements of MICP-relevant Sporosarcina pasteurii DSM33 for growth improvement in chemically defined and complex media. Scientific reports. 10, 22448 (2020) [CrossRef] [Google Scholar]
  4. V. Whiffin, Microbial CaCO3 Precipitaion for the production of Biocement. (PhD thesis, Murdoch University) (2004) [Google Scholar]
  5. L. A. van Paassen, C. M. Daza, M. Staal, D. Y. Sorokin, W. van der Zon, M. C. van Loosdrecht, Potential soil reinforcement by biological denitrification. Ecological Engineering. 36(2), 168–175 (2010) [CrossRef] [Google Scholar]
  6. H. Badiee, M. Sabermahani, F. Tabandeh, A. Saeedi Javadi, Application of an indigenous bacterium in comparison with Sporosarcina pasteurii for improvement of fine granular soil. International Journal of Environmental Science and Technology. 16(12), 8389–8400 (2019) [CrossRef] [Google Scholar]
  7. A. I. Omoregie, E. A. Palombo, D. E. Ong, P. M. Nissom, Biocementation of sand by Sporosarcina pasteurii strain and technical-grade cementation reagents through surface percolation treatment method. Construction and Building Materials. 228, 116828 (2019) [CrossRef] [Google Scholar]
  8. C. Konstantinou, Y. Wang, G. Biscontin, K. Soga, The role of bacterial urease activity on the uniformity of carbonate precipitation profiles of bio-treated coarse sand specimens. Scientific reports. 11, 6161 (2021) [CrossRef] [Google Scholar]
  9. M. Sharma, N. Satyam, K. R. Reddy, Rock-like behavior of biocemented sand treated under nonsterile environment and various treatment conditions. Journal of Rock Mechanics and Geotechnical Engineering. 13(3), 705–716 (2021) [CrossRef] [Google Scholar]
  10. K. Rowshanbakht, M. Khamehchiyan, R. H. Sajedi, M. R. Nikudel, Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecological Engineering. 89, 49–55 (2016) [CrossRef] [Google Scholar]
  11. L. Cheng, R. Cord-Ruwisch, Upscaling Effects of Soil Improvement by Microbially Induced Calcite Precipitation by Surface Percolation. Geomicrobiology Journal. 31(5), 396–406 (2014) [CrossRef] [Google Scholar]
  12. J. P. Carmona, P. J. V. Oliveira, L. J. Lemos, Biostabilization of a Sandy Soil Using Enzymatic Calcium Carbonate Precipitation. Procedia Engineering. 143, 1301–1308 (2016) [CrossRef] [Google Scholar]
  13. S. Stocks-Fischer, J. K. Galinat, S. S. Bang, Microbiological precipitation of CaCO3. Soil Biology and Biochemistry. 31(11), 1563–1571 (1999) [CrossRef] [Google Scholar]
  14. L. Cheng, M. A. Shahin, J. Chu, Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotechnica. 14, 615–626 (2019) [CrossRef] [Google Scholar]
  15. L. Cheng, M. A. Shahin, Urease active bioslurry: a novel soil improvement approach based on microbially induced carbonate precipitation. Canadian Geotechnical Journal. 53(9), 1376–1385 (2016) [CrossRef] [Google Scholar]
  16. K. Wen, Y. Li, S. Liu, C. Bu, L. Li, Development of an Improved Immersing Method to Enhance Microbial Induced Calcite Precipitation Treated Sandy Soil through Multiple Treatments in Low Cementation Media Concentration. Geotechnical and Geological Engineering. 37, 1015–1027 (2019) [CrossRef] [Google Scholar]
  17. P. Xiao, H. Liu, A. W. Stuedlein, T. M. Evans, Y. Xiao, Effect of relative density and biocementation on cyclic response of calcareous sand. Canadian Geotechnical Journal. 56(12), 1849–1862 (2019) [CrossRef] [Google Scholar]
  18. M. Tsukamoto, T. Inagaki, Y. Sasaki, K. Oda, Influence of relative density on microbial carbonate precipitation and mechanical properties of sand. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, 2613–2616 (2013) [Google Scholar]
  19. S. Gowthaman, S. Mitsuyama, K. Nakashima, M. Komatsu, S. Kawasaki, Biogeotechnical approach for slope soil stabilization using locally isolated bacteria and inexpensive low-grade chemicals: A feasibility study on Hokkaido expressway soil, Japan. Soils and Foundations. 59(2), 484–499 (2019) [CrossRef] [Google Scholar]
  20. C. Lee, H. Lee, O. B. Kim, Biocement Fabrication and Design Application for a Sustainable Urban Area. Sustainability. 10(11), 4079 (2018) [CrossRef] [Google Scholar]
  21. N. Erdmann, K. M. de Payrebrune, E. Kharik, D. Strieth, Optimization of the microbial induced calcium carbonate precipitation for the production of biocement (poster). Himmelfahrtstagung on Bioprocess Engineering 2021 New Bioprocesses, New Bioproducts (2021 Digital) [Google Scholar]
  22. L. Cheng, M. A. Shahin, D. Mujah, Influence of key environmental conditions on microbially induced cementation for soil stabilization. Journal of Geotechnical and Geoenvironmental Engineering. 143(1) (2017) [CrossRef] [Google Scholar]
  23. Y. Wang, K. Soga, J. T. DeJong, A. J. Kabla, Effects of Bacterial Density on Growth Rate and Characteristics of Microbial-Induced CaCO3 Precipitates: Particle-Scale Experimental Study. Journal of Geotechnical and Geoenvironmental Engineering. 147(6), 4021036 (2021) [CrossRef] [Google Scholar]
  24. R. Chang, S. Kim, S. Lee, S. Choi, M. Kim, Y. Park, Calcium Carbonate Precipitation for CO2 Storage and Utilization: A Review of the Carbonate Crystallization and Polymorphism. Frontiers in Energy Research. 5, 17 (2017) [CrossRef] [Google Scholar]
  25. F. Hammes, W. Verstraete, Key roles of pH and calcium metabolism in microbial carbonate precipitation. Re/Views in Environmental Science and Bio/Technology. 1, 3–7 (2002) [CrossRef] [Google Scholar]
  26. W. De Muynck, N. De Belie, W. Verstraete, Microbial carbonate precipitation in construction materials: A review. Ecological Engineering. 36(2), 118–136 (2010) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.