Open Access
MATEC Web Conf.
Volume 364, 2022
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022)
Article Number 04023
Number of page(s) 7
Section Concrete Repair, Rehabilitation and Retrofitting - Service Life Extension: Methods and Materials
Published online 30 September 2022
  1. J.L. Kepler, D. Darwin and J.R. Locke, Evaluation of Corrosion Protection Methods for Reinforced Concrete Highway Structures, Structural Engineering and Engineering Materials SM Report No. 58, University of Kansas Center for Research Inc., Lawrence, Kansas, May 2000 [Google Scholar]
  2. Y. P. Virmany, G.G. Clemena, Corrosion ProtectionConcrete Bridges, Report No. FHWA-RD-98-088, Federal Highway Administration, Washington, D.C., 1998 [Google Scholar]
  3. R.J. Kessler, R.G. Powers, and I.R. Lasa, Un update on the long-term use of cathodic protection of marine structures, Corrosion 2002, paper 02254, NACE International [Google Scholar]
  4. S. Szabo, I. Bakos, Cathodic Protection with Sacrificial Anodes, Corrosion Reviews 24: 2006, pp. 231 – 280 [Google Scholar]
  5. S.J. Bullard, S. Cramer and B. Covino, Final Report – Effectiveness of Cathodic Protection, SPR 345. Report No. FHWA-OR-RD-09-18, National Energy Technology Laboratory, Oregon, 2009 [Google Scholar]
  6. W. Schwarz, A. Pichlhöfer, A. van den Hondel and H. Esteves, Maintenance and repair of steel reinforced concrete structures by galvanic corrosion protection – field experiences over 10 years, ICCRRR 2018 Cape Town, South Africa, November 19-21, 2018, in MATEC Web of Conferences 199, 05005 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  7. W. Schwarz, F. Müllner, A.J. van den Hondel, Maintenance and repair of steel reinforced concrete structures by simultaneous galvanic corrosion protection and chloride extraction, fib Symposium 2016, Cape Town, South Africa 21-23 November 20161 [Google Scholar]
  8. A. Delagrave, J. Marchaud, and E. Samson, Prediction of Diffusion Coefficients in Cement-Based Materials on The Basis of Migration Experiments, Cement and Concrete Research, Vol. 26, No. 12, pp. 1831-1842, 1996 [CrossRef] [Google Scholar]
  9. C. Andrade, Calculation of chloride diffusion coefficients in concrete from ionic migration measurements, Cement and Concrete Research, Volume 23, Issue 3, May 1993, Pages 724-742 [CrossRef] [Google Scholar]
  10. L. Tang, H. E. Sørensen, Precision of the Nordic test methods for measuring the chloride diffusion/migration coefficients of concrete, Materials and Structures, Vol. 34, October 2001, pp 479-485 [CrossRef] [Google Scholar]
  11. B. Elsener, U. Angst, Mechanism of electrochemical chloride removal, Corrosion Science, Volume 49, Issue 12, December 2007, 4504-4522 [CrossRef] [Google Scholar]
  12. “Cathodic Protection of Steel in Concrete, ISO EN 12696 (2012 IDT) [Google Scholar]
  13. E. Samson, J. Marchand, K.A. Snyder, Calculation of ionic diffusion coefficients on the basis of migration test results, Materials and Structures, Vol 36, April 2003, pp 156 – 165 [Google Scholar]
  14. W. Schwarz, F. Müllner, A. van den Hondel, “Maintenance and repair of reinforced concrete structures by simulatanous galvanic corrosion protection and chlorid extraction – field experience” fib Symposium 2016, Cape Town, South Africa 21 – 23 November 2016 [Google Scholar]
  15. W. Schwarz, Gerd Wilsch, A. Pichlhöfer, G. Ebell, T. Völker, „Galvanic chloride extraction by an embedded zinc anode: Ion distribution mapped by laser induced breakdown spectroscopy (LIBS)” Concrete Solutions 7th International Conference on Concrete Repair, Cluj Napoca, Romania, 30 Sep to 2 Oct 2019 [Google Scholar]
  16. Cremers, D.; Radzemski, L., 2006: Handbook of Laser-induced Breakdown Spectroscopy, John Wiley & Sons Ltd (2006). [Google Scholar]
  17. G. Wilsch, F. Weritz, D. Schaurich, H. Wiggenhauser, Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy, Construction and Building Materials 19 (10) (2005) 724 – 730. doi:10.1016/j.conbuildmat.2005.06.001. [CrossRef] [Google Scholar]
  18. G. Wilsch, D. Schaurich, H. Wiggenhauser, Imaging laser analysis of building materials practical examples, AIP Conference Proceedings 1335 (1) (2011) 1315 – 1322. doi:10.1063/1.3592085. [CrossRef] [Google Scholar]
  19. G. Wilsch, T. Eichler, S. Millar and D. Schaurich, Laser Induced Breakdown Spectroscopy (LIBS) alternative to wet chemistry and micro-XRF, CRC Press 2014 (2014) 611 – 615. doi:10.1201/b17394-94 [Google Scholar]
  20. S. Millar, C. Gottlieb, T. Guenther, N. Sankat, G. Wilsch, S. Kruschwitz, Chlorine deter-mination in cement-bound materials with Laser-induced Breakdown Spectroscopy (LIBS) A review and validation, Spectrochimica Acta Part B: Atomic Spectroscopy, Volume 147, September 2018, p. 1-8 [CrossRef] [Google Scholar]
  21. S. Cousy, N. Gorodylova, L. Svoboda, J. Zelenka, “Influence of synthesis conditions over simonkolleite/ZnO precipitation”, Materials Science, Chemistry, Chemical Papers, (Published 15 June 2017) [Google Scholar]
  22. E. Yogarajah, T. Nawa, K. Kurumisawa, “Electrokinetic potential of hydrated cement in relation to adsorption of chlorides”, Cement and Concrete Research 39(4):340-344, (2009) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.