Open Access
MATEC Web Conf.
Volume 364, 2022
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022)
Article Number 04014
Number of page(s) 6
Section Concrete Repair, Rehabilitation and Retrofitting - Concrete Patch Repairs and Bonded Overlays
Published online 30 September 2022
  1. Huang, W.; Kazemi-Kamyab, H.; Sun, W.; Scrivener, K. Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC). Cem. Concr. Compos. 2017, 77, 86–101, doi:10.1016/j.cemconcomp.2016.12.009. [CrossRef] [Google Scholar]
  2. Charron, J.P.; Denarié, E.; Brühwiler, E. Permeability of ultra high performance fiber reinforced concretes (UHPFRC) under high stresses. Mater. Struct. Constr. 2007, 40, 269–277, doi:10.1617/s11527-006-9105-0. [CrossRef] [Google Scholar]
  3. Tayeh, B.A.; Abu Bakar, B.H.; Megat Johari, M.A.; Voo, Y.L. Mechanical and permeability properties of the interface between normal concrete substrate and ultra high performance fiber concrete overlay. Constr. Build. Mater. 2012, 36, 538–548, doi:10.1016/j.conbuildmat.2012.06.013. [CrossRef] [Google Scholar]
  4. Prem, P.R.; Ramachandra Murthy, A.; Ramesh, G.; Bharatkumar, B.H.; Iyer, N.R. Flexural behaviour of damaged rc beams strengthened with ultra high performance concrete. In Advances in Structural Engineering: Materials, Volume Three; 2015; pp. 2057–2069 ISBN 9788132221876. [CrossRef] [Google Scholar]
  5. Safdar, M.; Matsumoto, T.; Kakuma, K. Flexural behavior of reinforced concrete beams repaired with ultra-high performance fiber reinforced concrete (UHPFRC). Compos. Struct. 2016, 157, 448–460, doi:10.1016/j.compstruct.2016.09.010. [CrossRef] [Google Scholar]
  6. Brühwiler, E.; Denarié, E. Rehabilitation and strengthening of concrete structures using ultrahigh performance fibre reinforced concrete. In Proceedings of the Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE); 2013. [Google Scholar]
  7. Zhang, Y.; Zhu, P.; Liao, Z.; Wang, L. Interfacial bond properties between normal strength concrete substrate and ultra-high performance concrete as a repair material. Constr. Build. Mater. 2020, 235, doi:10.1016/j.conbuildmat.2019.117431. [Google Scholar]
  8. Zhang, Y.; Li, X.; Zhu, Y.; Shao, X. Experimental study on flexural behavior of damaged reinforced concrete (RC) beam strengthened by toughnessimproved ultra-high performance concrete (UHPC) layer. Compos. Part B Eng. 2020, 186, doi:10.1016/j.compositesb.2020.107834. [Google Scholar]
  9. Brühwiler, E.; Denarié, E. Rehabilitation of concrete structures using Ultra-High Performance Fibre Reinforced Concrete. In Proceedings of the The Second International Symposium on Ultra High Performance Concrete; 2008; pp. 1–9. [Google Scholar]
  10. Huang, W.; Kazemi-Kamyab, H.; Sun, W.; Scrivener, K. Effect of replacement of silica fume with calcined clay on the hydration and microstructural development of eco-UHPFRC. Mater. Des. 2017, 121, 36–46, doi:10.1016/j.matdes.2017.02.052. [CrossRef] [Google Scholar]
  11. Rossi, P. Influence of fibre geometry and matrix maturity on the mechanical performance of ultra high-performance cement-based composites. Cem. Concr. Compos. 2013, 37, 246–248, doi:10.1016/j.cemconcomp.2012.08.005. [CrossRef] [Google Scholar]
  12. Gadri, K.; Guettala, A. Evaluation of bond strength between sand concrete as new repair material and ordinary concrete substrate (The surface roughness effect). Constr. Build. Mater. 2017, 157, 1133–1144, doi:10.1016/j.conbuildmat.2017.09.183. [CrossRef] [Google Scholar]
  13. Hussein, H.H.; Walsh, K.K.; Sargand, S.M.; Steinberg, E.P. Interfacial properties of ultrahigh-performance concrete and high-strength concrete bridge connections. J. Mater. Civ. Eng. 2016, 28, doi:10.1061/(ASCE)MT.1943-5533.0001456. [CrossRef] [Google Scholar]
  14. Perez, F.; Bissonnette, B.; Gagné, R. Parameters affecting the debonding risk of bonded overlays used on reinforced concrete slab subjected to flexural loading. Mater. Struct. Constr. 2009, 42, 645–662, doi:10.1617/s11527-008-9410-x. [CrossRef] [Google Scholar]
  15. De la Varga, I.; Muñoz, J.F.; Bentz, D.P.; Spragg, R.P.; Stutzman, P.E.; Graybeal, B.A. Grout-concrete interface bond performance: Effect of interface moisture on the tensile bond strength and grout microstructure. Constr. Build. Mater. 2018, 170, 747–756, doi:10.1016/j.conbuildmat.2018.03.076. [CrossRef] [Google Scholar]
  16. Lu, Z.; Feng, Z. Gang; Yao, D.; Li, X.; Ji, H. Freeze-thaw resistance of Ultra-High performance concrete: Dependence on concrete composition. Constr. Build. Mater. 2021, 293, 1–10, doi:10.1016/j.conbuildmat.2021.123523. [CrossRef] [Google Scholar]
  17. Liu, S.; Sun, W.; Lin, W.; Lai, J. Preparation and durability of a high performance concrete with natural ultra-fine particles. Kuei Suan Jen Hsueh Pao/ J. Chinese Ceram. Soc. 2003, 11, 1080–1085. [Google Scholar]
  18. BS1881-125 Testing concrete — Part 4: Determination of ultrasonic pulse velocity. Br. Stand. 2004, doi:Construction Standard, CS1:2010. [Google Scholar]
  19. ASTM C1583 Standard Test Method for Tensile Strength of Concrete Surfaces and the Bond Strength or Tensile Strength of Concrete Repair and Overlay Materials by Direct Tension (Pull-off Method). ASTM Int. 2013, doi:10.1520/C1583_C1583M-13. [Google Scholar]
  20. Wu, L.; Farzadnia, N.; Shi, C.; Zhang, Z.; Wang, H. Autogenous shrinkage of high performance concrete: A review. Constr. Build. Mater. 2017, 149, 62–75, doi:10.1016/j.conbuildmat.2017.05.064. [CrossRef] [Google Scholar]
  21. Aitcin, P.-C. Concrete structure, properties and materials. Can. J. Civ. Eng. 1986, doi:10.1139/l86-075. [Google Scholar]
  22. Japan Concrete Institute Technical committee on autogenous shrinkage of concrete. In Proceedings of the In: Proceedings of the international workshop on autogenous shrinkage of concrete autoshrink ’98; 1998. [Google Scholar]
  23. Williams, A.; Markandeya, A.; Stetsko, Y.; Riding, K.; Zayed, A. Cracking potential and temperature sensitivity of metakaolin concrete. Constr. Build. Mater. 2016, 120, 172–180, doi:10.1016/j.conbuildmat.2016.05.087. [CrossRef] [Google Scholar]
  24. Xie, T.; Fang, C.; Mohamad Ali, M.S.; Visintin, P. Characterizations of autogenous and drying shrinkage of ultra-high performance concrete (UHPC): An experimental study. Cem. Concr. Compos. 2018, 91, 156–173, doi:10.1016/j.cemconcomp.2018.05.009. [CrossRef] [Google Scholar]
  25. Li, W.; Huang, Z.; Zu, T.; Shi, C.; Duan, W.H.; Shah, S.P. Influence of Nanolimestone on the Hydration, Mechanical Strength, and Autogenous Shrinkage of Ultrahigh-Performance Concrete. J. Mater. Civ. Eng. 2016, 28, doi:10.1061/(asce)mt.1943-5533.0001327. [Google Scholar]
  26. Camiletti, J.; Soliman, A.M.; Nehdi, M.L. Effect of limestone addition on early-age properties of ultra high-performance concrete. Proc. Inst. Civ. Eng. Constr. Mater. 2014, 167, 65–78, doi:10.1680/coma.11.00064. [CrossRef] [Google Scholar]
  27. Esping, O. Effect of limestone filler BET(H2O)-area on the fresh and hardened properties of self-compacting concrete. Cem. Concr. Res. 2008, 38, 938–944, doi:10.1016/j.cemconres.2008.03.010. [CrossRef] [Google Scholar]
  28. Bentz, D.P.; Sato, T.; De La Varga, I.; Weiss, W.J. Fine limestone additions to regulate setting in high volume fly ash mixtures. Cem. Concr. Compos. 2012, 34, 11–17, doi:10.1016/j.cemconcomp.2011.09.004. [CrossRef] [Google Scholar]
  29. Kakali, G.; Tsivilis, S.; Aggeli, E.; Bati, M. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cem. Concr. Res. 2000, 30, 1073–1077, doi:10.1016/S0008-8846(00)00292-1. [CrossRef] [Google Scholar]
  30. Kothari, A.; Rajczakowska, M.; Buasiri, T.; Habermehl-Cwirzen, K.; Cwirzen, A. Eco-uhpc as repair material—bond strength, interfacial transition zone and effects of formwork type. Materials (Basel). 2020, 13, 1–19, doi:10.3390/ma13245778. [Google Scholar]
  31. Jang, H.O.; Lee, H.S.; Cho, K.; Kim, J. Experimental study on shear performance of plain construction joints integrated with ultra-high performance concrete (UHPC). Constr. Build. Mater. 2017, 152, 16–23, doi:10.1016/j.conbuildmat.2017.06.156. [CrossRef] [Google Scholar]
  32. Aaleti, S.; Sritharan, S. Quantifying Bonding Characteristics between UHPC and Normal-Strength Concrete for Bridge Deck Application. J. Bridg. Eng. 2019, 24, doi:10.1061/(ASCE)BE.1943-5592.0001404. [CrossRef] [Google Scholar]
  33. Bissonnette, B.; Vaysburd, A.M.; Fay, K.F. von Best Practices for Preparing Concrete Surfaces Prior to Repairs and Overlays No MERL 12-17; 2012; [Google Scholar]
  34. Santos, P.M.D.; Júlio, E.N.B.S.; Silva, V.D. Correlation between concrete-to-concrete bond strength and the roughness of the substrate surface. Constr. Build. Mater. 2007, 21, 1688–1695, doi:10.1016/j.conbuildmat.2006.05.044. [CrossRef] [Google Scholar]
  35. Zhu, Y.; Zhang, Y.; Hussein, H.H.; Chen, G. Flexural strengthening of reinforced concrete beams or slabs using ultra-high performance concrete (UHPC): A state of the art review. Eng. Struct. 2020, 205, doi:10.1016/j.engstruct.2019.110035. [CrossRef] [Google Scholar]
  36. Momayez, A.; Ehsani, M.R.; Ramezanianpour, A.A.; Rajaie, H. Comparison of methods for evaluating bond strength between concrete substrate and repair materials. Cem. Concr. Res. 2005, 35, 748–757, doi:10.1016/j.cemconres.2004.05.027. [CrossRef] [Google Scholar]
  37. Tayeh, B.A.; Abu Bakar, B.H.; Megat Johari, M.A.; Zeyad, A.M. Microstructural analysis of the adhesion mechanism between old concrete substrate and UHPFC. J. Adhes. Sci. Technol. 2014, 28, 1846–1864, doi:10.1080/01694243.2014.925386. [CrossRef] [Google Scholar]
  38. Tayeh, B.A.; Abu Bakar, B.H.; Megat Johari, M.A.; Zeyad, A.M. The role of silica fume in the adhesion of concrete restoration systems. Adv. Mater. Res. 2013, 626, 265–269, doi:10.4028/ [Google Scholar]
  39. Vivekanandam, K.; Patnaikuni, I. Transition zone in high performance concrete during hydration. Cem. Concr. Res. 1997, 27, 817–823, doi:10.1016/S0008-8846(97)00079-3. [CrossRef] [Google Scholar]
  40. Goldman, A.; Bentur, A. The influence of microfillers on enhancement of concrete strength. Cem. Concr. Res. 1993, 23, 962–972, doi:10.1016/0008-8846(93)90050-J. [CrossRef] [Google Scholar]
  41. Li, P.P.; Sluijsmans, M.J.C.; Brouwers, H.J.H.; Yu, Q.L. Functionally graded ultra-high performance cementitious composite with enhanced impact properties. Compos. Part B Eng. 2020, 183, 1–9, doi:10.1016/j.compositesb.2019.107680. [CrossRef] [Google Scholar]
  42. Chorinsky, E.G. REPAIR OF CONCRETE FLOORS WITH POLYMER MODIFIED CEMENT MORTARS. Adhes. between Polym. Concr. / Adhésion entre polymères Bét. 1986, 230–234, doi:10.1007/978-1-4899-3454-3_25. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.